МИНОБРНАУКИ РОССИИ

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

Кафедра автомобилей и автомобильного хозяйства

РАБОЧАЯ ПРОГРАММА

дисциплины

«Б1.Д.Б.20 Техническая механика»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>23.03.03 Эксплуатация транспортно-технологических машин и комплексов</u> (код и наименование направления подготовки)

Сервис и техническая эксплуатация транспортных и технологических машин и оборудования (нефтегазодобыча)

(наименование направленности (профиля) образовательной программы)

Квалификация *Бакалавр*

Форма обучения заочная Рабочая программа дисциплины «Б1.Д.Б.20 Техническая механика» /сост. Р.М. Яйкаров - Кумертау: ОГУ, 2025

Рабочая программа предназначена студентам заочной формы обучения по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов

[©] Яйкаров Р.М. 2025

[©] Кумертауский филиал ОГУ, 2025

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины: подготовка бакалавра к деятельности, требующей фундаментальных, профессиональных знаний и умений, используемых при выполнении расчетов на прочность, жесткость и устойчивость элементов конструкций транспортно-технологических машин и комплексов, анализе кинематики и динамики механизмов, а также обоснования выбора материалов и режимов работы для диагностики неисправностей, планирования ремонтов и оценки остаточного ресурса оборудования.

Задачи:

- научить определять усилия в конструкциях, анализировать движение тел и систем под действием сил;
- освоить методы расчета элементов конструкций на прочность, жесткость и устойчивость при различных видах деформации;
- изучить принципы работы, критерии работоспособности и методики расчета типовых соединений и передач, применяемых в машинах.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Б1.Д.Б.14 Физика, Б1.Д.Б.16 Математика

Постреквизиты дисциплины: Б1.Д.Б.22 Конструкция и основы расчета энергетических установок, Б1.Д.В.10 Производственно-техническая база транспортно-технологических и сервисных предприятий отрасли, Б1.Д.В.17 Электротехника и электрооборудование транспортных и транспортно-технологических машин и оборудования

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование	Код и наименование	Планируемые результаты обучения по
формируемых	индикатора достижения	дисциплине, характеризующие этапы
компетенций	компетенции	формирования компетенций
ОПК-1 Способен	ОПК-1-В-4 Применяет	Знать:
применять	знания из области	- законы механики деформируемого твердого
естественнонаучные	механики в	гела, основные понятия о типовых элементах
и общеинженерные	профессиональной	конструкций и принципы выбора их силовых схем;
знания, методы	деятельности	– виды схематизации реальных объектов,
математического	ОПК-1-В-5 Выполняет	аналитические и экспериментальные методы
анализа и	расчёты на прочность,	определения внутренних усилий, напряжений,
моделирования в	жёсткость и устойчивость	деформаций и перемещений в конструктивных
профессиональной	элементов инженерных	элементах.
деятельности	конструкций в	Уметь:
	профессиональной	– выполнять кинематические, динамические и
	деятельности	прочностные расчёты с использованием готовых
	ОПК-1-В-7 Применяет	прикладных компьютерных программ
	знания химико-физических	прочностного анализа.
	свойств конструкционных	Владеть:
	материалов в	- способностью применять естественнонаучные и
	профессиональной	общеинженерные знания, методы
	деятельности	математического анализа и моделирования с
	ОПК-1-В-8 Выполняет	применением профессиональных Интернет-

Код и наименование	Код и наименование	Планируемые результаты обучения по			
формируемых	индикатора достижения	дисциплине, характеризующие этапы			
компетенций	компетенции	формирования компетенций			
	расчёт и конструирование	ресурсов, автоматизированных информационных			
	элементов инженерных	систем и специализированного программного			
	конструкций	обеспечения в профессиональной деятельности			

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 4 зачетные единицы (144 академических часа).

	Трудое	мкость,
Вид работы	академиче	ских часов
	3 семестр	всего
Общая трудоёмкость	144	144
Контактная работа:	13,5	13,5
Лекции (Л)	4	4
Практические занятия (ПЗ)	4	4
Лабораторные работы (ЛР)	4	4
Консультации	1	1
Промежуточная аттестация (зачет, экзамен)	0,5	0,5
Самостоятельная работа:	130,5	130,5
- выполнение контрольной работы (КонтрР);	36	36
- самоподготовка (проработка и повторение лекционного материала и	47,5	47,5
материала учебников и учебных пособий;		
- подготовка к лабораторным занятиям;	16	16
- подготовка к практическим занятиям;	22	22
- подготовка к экзамену.	9	9
Вид итогового контроля (зачет, экзамен, дифференцированный	экзамен	
зачет)		

Разделы дисциплины, изучаемые в 3 семестре

		Количество часов					
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.	
			Л	П3	ЛР	работа	
1	Статика	30	1	2	_	27	
2	Кинематика	50	1	2	2	45	
3	Динамика. Аналитическая механика	64	2	_	2	60	
	Итого:	144	4	4	4	132	
	Всего:	144	4	4	4	132	

4.2 Содержание разделов дисциплины

№ 1 Статика. Предмет и задачи теоретической механики. Основные понятия, аксиомы статики, задачи статики. Связи и их реакции. Принцип освобождаемости от связей. Геометрический и аналитический способы задания силы. Теорема о трех непараллельных силах. Момент силы относительно точки и оси. Приведение систем сил к простейшему виду. Главный вектор и главный момент системы сил. Геометрические и аналитические условия равновесия различных систем сил (сходящейся, произвольной плоской, произвольной пространственной). Основная теорема статики. Условия равновесия различных систем сил.

- **№ 2 Кинематика.** Кинематика точки. Способы задания движения точки. Определение траектории, скорости и ускорения точки при различных способах задания ее движения. Кинематика твердого тела. Виды движения твердого тела. Простейшие движения твердого тела. Плоскопараллельное движение твердого тела. Сложное движение твердого тела.
- № 3 Динамика. Динамика материальной точки. Две основные задачи динамики материальной точки. Дифференциальные уравнения движения материальной точки. Центр масс и его координаты. Моменты инерции механической системы. Общие теоремы динамики. Потенциальная энергия и потенциальное поле. Теория удара двух тел.

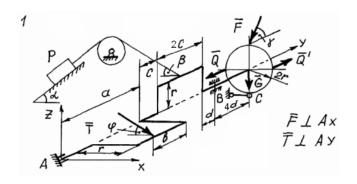
Принцип Даламбера для точки и механической системы. Главный вектор и главный момент сил инерции. Метод кинетостатики. Связи и классификация связей. Принцип возможных перемещений. Общее уравнение динамики. Обобщенные координаты и силы. Способы вычисления обобщенных сил. Уравнения равновесия и движения механической системы в обобщенных координатах. Уравнение Лагранжа второго рода. Основные понятия аналитической механики электромеханических систем.

4.3 Лабораторные работы

№ ЛР	$N_{\underline{0}}$	Наименование лабораторных работ	Кол-во
J12 J11	раздела	паименование лаоораторных раоот	часов
1	2.	Определение кинематических параметров плоского манипулятора	2.
1	2	при заданном движении захвата	2
2	3	Интегрирование дифференциальных уравнений движения	2
2	3	материальной точки	2
		Итого:	4

4.4 Практические занятия (семинары)

№ занятия	$N_{\underline{0}}$	Тема	Кол-во
из занятия	раздела	ТСМа	часов
1	1	Определение реакций опор составной конструкции (система двух тел)	2
2	2	Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях	2
		Итого:	4

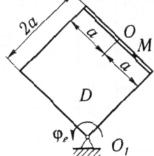

4.5 Контрольная работа (3 семестр)

Задание 1. Плоская конструкция состоит из двух тел 1 и 2, которые соединены между собой при помощи шарнира C. Определить реакции опор A и B на схемах, если a=1 м; $\alpha=30^\circ$. Приложенные нагрузки заданы в таблице.

№ вар.	F, кH	М, кНм	<i>q, кН/м</i>	1 1 a C
1	6	4	2	A Amm Amm B

3адание 2. На рисунке показана система сил $\{\overline{F}, \overline{Q}, \overline{Q}', \overline{P}, \overline{G}\}$, действующая на вал AB; a, b, c, d, e, r, h – геометрические размеры; α, β, γ – углы; $\overline{F} \perp Ax$; $\overline{T} \parallel Ay$.

Составить расчетные схемы для вала AB и тела I и записать уравнения равновесия сил в общем виде.


Задание 3. Определить положение главных осей и вычислить главные центральные моменты инерции сечения. В задании даётся сечение, одна из центральных осей которого является осью симметрии фигуры.

№ п/п	а	ь	1 b/2 a/2
1	100	60	24 A A A A A A A A A A A A A A A A A A A

Задание 4. Прямоугольная пластина вращается вокруг неподвижной оси по закону $18\sin(\pi t/4)$. Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO_1 лежит в плоскости пластины (пластина вращается в пространстве).

Найти абсолютную скорость и абсолютное ускорение точки M.

	Уравнение относительно-	_	нение ия тела					Пополии
Номер варианта	го движения точки M $OM = s_r = s_r(t)$, см	$arphi_e = arphi_e(t),$ рад	$x_e = x_e (t),$ CM	$\begin{bmatrix} t_I, \\ \mathbf{c} \end{bmatrix}$	R, cm	а, см	α, град	Дополни- тельные данные
1	$18\sin(\pi t/4)$	$2t^3 - t^2$	_	2/3	_	25	_	
		20						

Задание 5. В заданных вариантах для плоского механизма описать вид движения каждого звена в данный момент времени.

Найти: скорости точек A, B, C и D; угловые скорости всех звеньев механизма; ускорения точек A, B и C; угловые ускорения звеньев механизма.

Необходимые для расчета данные приведены в таблице.

№ варианта	c^{-l}	$rac{arepsilon_1}{c^{-2}}$	l ₁ м	АВ м	ВС м	1 A
1	1	2	2	4	3	ε_1 ω_1 ω_1 ω_2 ω_3 ω_45° ω_1 ω_1 ω_2 ω_3 ω_45° ω_45°

Задание 6. На рисунке показана механическая система, состоящая из трех тел, соединенных между собой нерастяжимыми нитями.

Дано: m_1 , m_2 , m_3 — массы тел; r_2 , R_2 , r_3 — радиусы тел; \overline{F} — активная сила; α , γ — углы; ρ_2 — радиус инерции тела 2; f — коэффициент трения скольжения тела l; k — коэффициент трения качения тела 3. Определить ускорение тела l (a_1).

№ п/п		Сила тяжести	R/r	Радиус инерции	
	G_{I}	G_2	G_3		i_{2x}
1	G	G	3G	2	2r

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Гребенкин, В. З. Техническая механика: учебник и практикум для вузов / В. З. Гребенкин, Р. П. Заднепровский, В. А. Летягин; под редакцией В. З. Гребенкина, Р. П. Заднепровского. Москва: Издательство Юрайт, 2025. 390 с. (Высшее образование). ISBN 978-5-9916-5953-6. —— Режим доступа: https://urait.ru/bcode/560544.
- 2. Молотников, В. Я. Техническая механика / В. Я. Молотников. 3-е изд., стер. Санкт-Петербург: Лань, 2023. 476 с. ISBN 978-5-507-45522-5. Режим доступа: https://e.lanbook.com/book/271301.
- 3. Андреев, В. И. Техническая механика: учебник / В. И. Андреев и др. 2-е изд., испр. и доп. Москва: ACB, 2013. 256 с. Библиограф.: C.251. ISBN 978-5- 93093-876-8.

5.2 Дополнительная литература

- 1. Жилин, Р. А. Техническая механика: учебное пособие / Р. А. Жилин, В. А. Жулай, Ю. Б. Рукин. Вологда: Инфра-Инженерия, 2022. 196 с. ISBN 978-5-9729-1048-9. Режим доступа: https://e.lanbook.com/book/281540.
- 2. Техническая механика: методические указания / составитель А. А. Попов. Сочи: СГУ, 2018. 26 с. Режим доступа: https://e.lanbook.com/book/147658.

3. Сапрыкин, В.И. Техническая механика: учебник / В. И. Сапрыкин. — 2-е изд., испр. - Москва: Эксмо, 2005. — 560 с. — (Образовательный стандарт XXI). — Библиогр.: с. 552. — ISBN 5-699-13023-3.

1.3 Периодические издания

- 1. САПР и графика: журнал. М.: ООО «КомпьютерПресс», 2025. Режим доступа: https://sapr.ru
- 2. Прикладная механика и техническая физика: журнал. Н.: Сиб. отд-ния РАН, 2025. Режим доступа: https://sibran.ru/journals/PMiTPh

5.4 Интернет-ресурсы

<u>http://www.mon.gov.ru</u> – Официальный сайт Министерства образования и науки Российской Федерации;

http://www.edu.ru – Федеральный портал «Российское образование»;

http://window.edu.ru – Портал информационно-коммуникационных технологий в образовании;

http://rucont.ru - Национальный цифровой ресурс «РУКОНТ» ЭБС ОГУ;

http://www.biblioclub.ru – Университетская библиотека онлайн;

http://znanium.com – ЭБС Znanium издательства «Инфра-М»;

http://aist.osu.ru/ - Система многоуровневого автоматизированного контроля АИССТ.

<u>https://urait.ru/</u> – Образовательная платформа Юрайт. Для вузов и ссузов.

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы

Операционная система семейства Windows.

Пакет Microsoft Office (Word, Excel, PowerPoint, OneNote, Outlook, Publisher, Access).

Бесплатное средство просмотра файлов PDF - Adobe Reader https://get.adobe.com/ru/reader/.

Система автоматизированного проектирования NanoCAD, AutoCAD, Компас.

Интернет-обозреватель Яндекс. Браузер.

Программный комплекс для расчета и проектирования строительных конструкций ACADEMIC set (ПК Лира 9.4 PRO, ПК МОНОМАХ 4.2 PRO).

«Открытое образование», Каталог курсов, МООК – «Теория решения изобретательских задач». – https://openedu.ru/course/misis/triz1/.

«Открытое образование», Каталог курсов, МООК – «Сопротивление материалов». – https://openedu.ru/course/misis/MATSTR/.

«Открытое образование», Каталог курсов, МООК – «Основы расчета строительных конструкций». – https://openedu.ru/course/spbstu/BASBUILD/.

6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в учебных аудиториях.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети «Интернет», и обеспечением доступа в электронную информационно-образовательную среду ОГУ.

ЛИСТ согласования рабочей программы

Направление подготовки: 23.03.03 Эксплуатация	гранспортно-технологически наименование	х машин и комплексов
		погинеских машин 1
Профиль: Сервис и техническая эксплуатац	ия транспортных и техно.	погических машин
оборудования (нефтегазодобыча)		
Дисциплина: Б1.Д.Б.20 Техническая механика		
диоциплини. <u>Бт.д.в.го теми токия жени</u>		
Форма обучения: заочная		
(очная, очн	о-заочная, заочная)	
Год набора		
РЕКОМЕНДОВАНА на заседании кафедры		
автомобилей и автомобильного хозяйства		
наимен	ование кафедры	
протокол № 9 от «30» апреля 2025 г.		
inpotonosiste y of ne on impotent assets	Ω	
Ответственный исполнитель, и.о. заведующего ка	федрой	
автомобилей и автомобильного хозяйства	fr.	Е.С. Золотарев
наименование кафедры	пддпись	расшифровка подписи
Исполнители:		D. M. (IV
Ст. преподаватель кафедры ААХ	подпись	Р.М. Яйкаров
должность	поопись	puemmappositu neoiman
4		
TIME W	15 area 2025p	
ОДОБРЕНА на заседании НМС, протокол № 6 о	г « 13 » мая 2023г.	
H IMC	Th-f-	Л.Ю. Полякова
Председатель НМС	подпись	расшифровка подписи
СОГЛАСОВАНО:	0	
COLVIL COBLILIO.		
И.о. зав.кафедрой ААХ	Jan San San San San San San San San San S	Е.С. Золотарев
	потись	расшифровка подписи
Заведующий библиотекой	подпись	расшифровка по