МИНОБРНАУКИ РОССИИ

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

Кафедра общеобразовательных дисциплин и ІТ-технологий

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ «Б1.Д.Б.16 Математика»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>23.03.03 Эксплуатация транспортно-технологических машин и комплексов</u> (код и наименование направления подготовки)

<u>Сервис и техническая эксплуатация транспортных и технологических машин и оборудования</u> (нефтегазодобыча)

(наименование направленности (профиля) образовательной программы)

Квалификация <u>Бакалавр</u>

Форма обучения Заочная

Рабочая программа дисциплины «Б1.Д.Б.16 Математика» /сост. Д.К.Афанасова-Кумертау: ОГУ, 2025

Рабочая программа предназначена студентам заочной формы обучения по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов

[©] Афанасова Д.К. 2025 © Кумертауский филиал ОГУ, 2025

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины — овладение студентами математическим аппаратом для анализа, моделирования и решения прикладных задач в системе электроснабжения.

Задачи:

- -изучить основные математические понятия необходимые для решения инженерных задач;
- -овладеть основными приемами анализа и моделирования устройств, процессов и явлений при поиске оптимальных решений прикладных задач;
- -выработать у студентов умение самостоятельно расширять свои знания, проводить анализ прикладных инженерных задач.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: Б1.Д.Б.20 Техническая механика, Б1.Д.Б.23 Основы теории надежности и работоспособности технических систем, Б1.Д.Б.25 Теория транспортных процессов и систем, Б1.Д.Б.28 Взаимозаменяемость, стандартизация и технические измерения, Б1.Д.Б.29 Сопротивление материалов, Б1.Д.Б.30 Детали машин и основы конструирования, Б1.Д.Б.31 Основы конструкции и расчёта гидравлических и пневматических систем, Б1.Д.В.11 Организация и планирование производства, ФДТ.2 Металлорежущие станки и инструмент

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	математического анализа, статистики, теории вероятности и математического моделирования в профессиональной деятельности	основные понятия и методы математического аппарата векторной алгебры, аналитической геометрии и математического анализа Уметь: использовать математический аппарат
		при изучении других дисциплин и при решении задач Владеть: навыками использования стандартных методов и моделей математического аппарата и их применения к решению инженерных задач.

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 10 зачетных единиц (360 академических часов).

	Трудоемкость,					
Вид работы	академических часов					
	1 семестр	2 семестр	3 семестр	всего		
Общая трудоёмкость	144	144	72	360		
Контактная работа:	6,25	15,25	11,5	33		
Лекции (Л)	4	10	6	20		
Практические занятия (ПЗ)	2	4	4	10		
Консультации		1	1	2		
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	0,5	1		
Самостоятельная работа:	137,75	128,75	60,5	327		
- выполнение контрольной работы			30	30		
(КонтрР);						
- самоподготовка (проработка и	67,75	61,75	10,5	140		
повторение лекционного материала и						
материала учебников и учебных пособий;						
- подготовка к практическим занятиям;	62	60	13	135		
- подготовка к экзамену/ зачету	8	7	7	22		
Вид итогового контроля (зачет, экзамен,	зачет	экзамен	экзамен			
дифференцированный зачет)						

Разделы дисциплины, изучаемые в 1 семестре

			Количество часов				
№ разлена	Наименование разделов	всего	аудиторная работа			внеауд.	
раздела			Л	П3	ЛР	работа	
1	Линейная алгебра	26	4	2		20	
2	Аналитическая геометрия	20				20	
3	Векторные пространства	20				20	
4	Комплексные числа	20	20		20		
5	Введение в математический анализ	20	2		20		
6	Дифференциальное исчисление функции одной	18				18	
0	переменной						
7	Исследование функции с помощью производных					10	
8	Теория многочленов	10				10	
	Итого:	144	4	2		138	

Разделы дисциплины, изучаемые в 2 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
9	Неопределенный интеграл	26	4	2		20
10	Определенный интеграл	22	2			20
11	Функции нескольких	20				20
	переменных					
12	Кратные и криволинейные интегралы	20				20
13	Дифференциальные уравнения	36	4	2		30

№ раздела		Количество часов				
	Наименование разделов	всего	аудиторная работа		внеауд.	
			Л	ПЗ	ЛР	работа
14	Ряды	20				20
	Итого:	144	10	4		130

Разделы дисциплины, изучаемые в 3 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа		внеауд. работа	
			Л	П3	ЛР	раоота
15	Теория вероятностей и математическая	72	6	4		62
	статистика					
	Итого:	72	6	4		62
	Bcero:	360	20	10		330

4.2 Содержание разделов дисциплины

Раздел 1. Линейная алгебра Матрицы: основные определения, классификация, операции над матрицами (сложение, вычитание, умножение). Элементарные преобразования матриц, приведение к треугольному виду, транспонирование матриц, их свойства.

Определители. Вычисление определителей II, III порядка. Определители n-го порядка и их свойства. Миноры и алгебраические дополнения. Разложение определителя по строке (столбцу).

Обратная матрица: определение, свойства. Применение обратной матрицы для решения систем.

Ранг матрицы. Теорема о ранге. Вычисление ранга матрицы.

Системы m линейных уравнений с n неизвестными: основные определения, классификация. Решение системы m линейных уравнений с n неизвестными методом Гаусса.

Решение системы п линейных уравнений с п неизвестными по правилу Крамера.

Совместность системы линейных алгебраических уравнений. Однородные и неоднородные системы, теорема Кронекера-Капелли. Фундаментальная система решений.

Раздел 2. Аналитическая геометрия.

Прямоугольная декартова система координат.

Векторы на плоскости и в пространстве. Линейные операции над векторами. Скалярное, векторное и смешанное произведение.

Прямая и плоскость в пространстве. Взаимное расположение прямых и плоскостей.

Кривые и поверхности 2-го порядка.

Раздел 3. Векторные пространства

Векторное пространство. Базис, размерность, изоморфизм векторных пространств. Матрица перехода от одного базиса к другому. Векторные подпространства.

Евклидово пространство. Ортогональные и ортонормированные системы векторов.

Раздел 4. Комплексные числа. Комплексные числа. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая, тригонометрическая и показательная форма записи комплексных чисел. Арифметические операции над комплексными числами. Формула Муавра. Корни из комплексных чисел. Формула Эйлера и ее применение.

Раздел 5. Введение в математический анализ. Числовая последовательность. Арифметические операции над числовыми последовательностями. Бесконечно большие и бесконечно малые последовательности. Предел числовой последовательности. Предельный переход в неравенствах. Монотонные последовательности. Существование предела монотонной ограниченной последовательности.

Понятие функции. Область ее определения, способы задания функции. Основные элементарные функции, их свойства и графики. Сложные и обратные функции.

Предел функции в точке и бесконечности. Теоремы о пределах функций. Односторонние пределы.

Понятие функции, ограниченной на множестве и в окрестности точки. Теоремы об ограниченности функций, имеющих предел. Замечательные пределы.

Бесконечно большие и бесконечно малые функции. Сравнение бесконечно больших и бесконечно малых функций. Основные эквивалентности.

Непрерывные функции: локальные свойства непрерывных функций; непрерывность функции от функции; точка разрыва; ограниченность функции, непрерывной на отрезке; существование наибольшего и наименьшего значений; прохождение через все промежуточные значения; монотонные функции, существование и непрерывность обратной функции, непрерывность элементарных функций.

Непрерывные функции: локальные свойства непрерывных функций; непрерывность функции от функции; точка разрыва; ограниченность функции, непрерывной на отрезке; существование наибольшего и наименьшего значений; прохождение через все промежуточные значения; монотонные функции, существование и непрерывность обратной функции, непрерывность элементарных функций.

Раздел 6. Дифференциальное исчисление функции одной переменной. Производная функции в точке, её геометрический и механический смысл. Производная суммы, произведения, частного. Производная сложной функции, производная обратной функции. Производная параметрической и неявно заданной функции. Таблица производных.

Понятие дифференцируемости функции в точке. Необходимые и достаточные условия дифференцируемости функции в точке. Связь между дифференцируемостью и непрерывностью функции в точке. Уравнения касательной и нормали.

Дифференциал функции и его свойства. Связь дифференциала функции с производной. Геометрический смысл дифференциала, применение дифференциала в приближенных вычислениях.

Производные и дифференциалы высших порядков.

Основные теоремы дифференциального исчисления (теорема Ферма, Роля, Лагранжа, Коши).

Раскрытие неопределенностей с помощью правила Лопиталя.

Раздел 7. Исследование функций с помощью производных. Условия монотонности функций. Точки экстремума. Необходимые и достаточные условия экстремума. Нахождение наибольшего и наименьшего значения функции, дифференцируемой на отрезке.

Исследование функции на выпуклость и вогнутость, точки перегиба.

Асимптоты кривых. Общая схема исследования функций и построения графиков.

Раздел 8. Теория многочленов. Многочлены, теорема Безу. Основная теорема алгебры. Разложение многочлена с действительными коэффициентами на линейные и квадратичные множители.

Разложение рациональных дробей на простейшие.

Раздел 9. Неопределенный интеграл. Первообразные. Неопределенный интеграл и его свойства. Непосредственное интегрирование, интегрирование путем подведения под знак дифференциала. Метод подстановки: замена переменной, тригонометрические подстановки.

Интегрирование по частям.

Простейшие интегралы, содержащие квадратный трехчлен.

Интегрирование рациональных дробей: метод неопределенных коэффициентов, метод Остроградского.

Интегрирование иррациональных функций.

Интегрирование тригонометрических функций

Раздел 10. Определенный интеграл. Задачи, приводящие к понятию определенного интеграла. Определенный интеграл как предел интегральных сумм. Основные свойства определенного интеграла.

Вычисление определенного интеграла. Теорема о производной интеграла с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям.

Приложение определенного интеграла.

Несобственные интегралы I и II рода, их свойства.

Раздел 11. Функции нескольких переменных. Определение функции нескольких переменных. Область определения, предел, непрерывность, геометрическое изображение.

Частные производные и их геометрический смысл.

Понятие дифференцируемости функции. Необходимые и достаточные условия дифференцируемости функции.

Полное приращение полный дифференциал функций, связь с частными производными. Применение дифференциала в приближенных вычислениях.

Производные от сложных функций и от функций, заданных неявно.

Частные производные и дифференциалы высших порядков.

Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности.

Экстремумы функций нескольких переменных. Необходимые и достаточные условия экстремума.

Раздел 12. Кратные и криволинейные интегралы. Задача, приводящая к понятию двойного интеграла. Двойной интеграл, как предел интегральных сумм. Геометрический смысл двойного интеграла. Свойства. Сведение двойного интеграла к повторному.

Замена переменных в двойном интеграле. Вычисление двойного интеграла в полярных координатах.

Геометрические и физические приложения двойного интеграла

Тройной интеграл, как предел интегральных сумм. Сведение тройного интеграла к повторному. Замена переменных тройном интеграле.

Вычисление тройного интеграла в цилиндрических и сферических координатах. Приложения.

Криволинейные интегралы и интегралы по поверхности: криволинейные интегралы; формула Грина; интегралы по поверхности; формула Остроградского; элементарная формула Стокса; условия независимости криволинейного интеграла от формы пути.

Раздел 13. Дифференциальные уравнения. Физические задачи, приводящие к дифференциальным уравнениям I порядка. Решение уравнения, начальные условия. Задача Коши, теорема существования и единственности задачи Коши. Общее и частное решения, геометрический смысл общего и частного решения.

Дифференциальные уравнения с разделенными переменными. Дифференциальные уравнения с разделяющимися переменными.

Однородные уравнения.

Линейные уравнения I порядка. Метод вариации произвольной постоянной. Уравнение Бернулли.

Уравнения в полных дифференциалах.

Дифференциальные уравнения высших порядков. Задача Коши. Понятие общего и частного решения. Теорема Коши.

Уравнения, допускающие понижение порядка.

Линейные однородные дифференциальные уравнения, их свойства. Линейно зависимые и линейно независимые функции на отрезке. Вронскиан. Теоремы о вронскиане. Теорема о структуре общего решения линейного однородного дифференциального уравнения.

Линейные однородные уравнения с постоянными коэффициентами.

Теорема о структуре общего решения линейного неоднородного уравнения. Метод Лагранжа.

Решение линейного неоднородного дифференциального уравнения со специальной правой частью.

Раздел 14. Ряды. Числовые ряды. Сходимость и сумма ряда. Необходимое условие сходимости ряда. Арифметические операции над рядами: умножение на число, сложение, вычитание.

Ряды с положительными членами. Теоремы сравнения. Признаки сходимости Даламбера и Коши. Интегральный признак сходимости ряда.

Знакочередующиеся ряды. Теорема Лейбница

Знакопеременные ряды. Абсолютно и условно сходящиеся ряды. Теоремы об абсолютной и условной сходимости ряда.

Функциональные ряды. Область сходимости. Равномерная сходимость Признак Вейерштрасса.

Степенные ряды. Теорема о Абеля. Интервал сходимости. Свойство степенных рядов. Ряды Тейлора и Маклорена.

Раздел 15. Теория вероятностей и математическая статистика. Комбинаторика и её основные формулы. События. Виды событий. Операции над событиями. Вероятность события. Классическое, статистическое, геометрическое определения вероятности события. Свойства вероятности.

Теорема сложения вероятностей. Теоремы о вероятности противоположных событий, невозможных событий, событий, образующих полную группу.

Условная вероятность. Теорема умножения вероятностей. Следствия теорем сложения и умножения: теорема сложения вероятностей совместных событий, формула полной вероятности, формула Байеса.

Схема Бернулли. Формула Бернулли. Формула Пуассона. Локальная и интегральная формулы Муавра-Лапласа.

Случайные величины: дискретные и непрерывные величины. Законы распределения дискретных случайных величин: многоугольник распределения, ряд распределения, функция распределения и её свойства, биномиальное распределение, распределение Пуассона.

Числовые характеристики дискретных случайных величин. Математическое ожидание, дисперсия и их свойства, среднее квадратическое отклонение. Непрерывная случайная величина, её функция распределения. Плотность распределения непрерывных случайных величин и её свойства. Числовые характеристики непрерывных случайных величин. Основные законы распределения непрерывных случайных величин: равномерное, показательное и нормальное распределения.

Задача математической статистики. Генеральная совокупность и выборка. Виды выборки. Способы отбора.

Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма.

Статистические оценки параметров распределения. Точность оценки, надежность, доверительный интервал.

Доверительные интервалы для параметров случайной величины, распределенной по нормальному закону.

Проверка статистических гипотез. Метод наибольшего правдоподобия. Статистические методы обработки экспериментальных данных.

4.3 Практические занятия (семинары)

№ занятия	№	Тема	
л запятия	раздела		
1	1	Матрицы. Операции над матрицами. Определитель. Обратная	2
		матрица. Ранг матрицы	
2	9	Основные методы интегрирования	2
3	13	Дифференциальные уравнения первого порядка	2
4	15	Классическое определение вероятности. Формулы комбинаторики	2
5	15	Теоремы сложения и умножения вероятностей	2
		Итого:	10

4.4 Контрольная работа (3 семестр)

Вариант 1

Задание 1. Студент идет на экзамен, подготовив только 15 вопросов из 18. Экзаменатор задает студенту 3 вопроса. Найти вероятность того, что студент знает все три вопроса.

Задание 2. Наудачу выбрано натуральное число, не превосходящее 20. Найти вероятность того, что это число кратно 5.

Задание 3. Вероятность попадания в мишень для первого стрелка 0,8, а для второго - 0,6. Стрелки независимо друг от друга сделали по одному выстрелу. Какова вероятность того, что : а) в мишень попадет хотя бы один из стрелков;

б) ни один из стрелков не попадет в мишень.

Задание 4. Имеется 10 одинаковых урн, из них три урны с номером 1, в которых находится 7 белых и 8 красных шаров, одна урна с номером два с 1 белым и 9 красными шарами и шесть урн с номером три с 9 белыми и 1 красным шаром. Определить вероятность того, что шар, вынутый из произвольной урны, окажется белым.

Задание 5. Книга издана тиражом в 50000 экземпляров. Вероятность того, что в книге имеется дефект брошюровки, равна 0,0001. Найти вероятность того, что тираж содержит 5 неправильно сброшюрованных книг. Задание 6.Задан закон распределения случайной величины X (в первой строке таблицы даны возможные значения величины X, а во второй - вероятности р этих возможных значений). Найти : 1) математическое ожидание M(x); 2) дисперсию D(x); 3) среднее квадратическое отклонение $\sigma(x)$. Начертить график закона распределения

X	28	32	34	36
р	0,1	0,2	0,2	0,5

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Шипачев, В. С. Высшая математика. Полный курс: учебник для бакалавров / В. С. Шипачев; [под ред. А. Н. Тихонова].- 4-е изд., испр. и доп.. Москва: Юрайт, 2014. 607 с.. (Бакалавр. Базовый курс) ISBN 978-5-9916-3325-3.
- 2. Богомолов, Н. В. Математика : учебник для вузов / Н. В. Богомолов, П. И. Самойленко. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 401 с. (Высшее образование). ISBN 978-5-534-07001-9. Режим доступа: https://urait.ru/bcode/535729

5.2 Дополнительная литература

- 1. Беришвили, О. Н. Математика : учебное пособие / О. Н. Беришвили, С. В. Плотникова. Самара : СамГАУ, 2023. 128 с. ISBN 978-5-88575-733-1. Режим доступа: https://e.lanbook.com/book/392549.
- 2. Богомолов, Н. В. Математика. Задачи с решениями: учебное пособие для вузов / Н. В. Богомолов. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 755 с. (Высшее образование). ISBN 978-5-534-16210-3. Режим доступа: https://urait.ru/bcode/544898.
- 3. Гмурман, В. Е. Теория вероятностей и математическая статистика : учеб. пособие / В. Е. Гмурман. 12-е изд.. Москва : Высшее образование, 2006. 479 с.

5.3 Интернет-ресурсы

- 1. http://www.mccme.ru/ URL: Московский центр непрерывного математического образования
- 2. http://vilenin.narod.ru/Mm/Books/Books.htm Математическая библиотека
- 3. http://en.edu.ru/ Естественно-научный образовательный портал
- 4. Вестник Московского Университета. Серия 1. Математика. Механика: журнал. М.: Агенство «Роспечать» периодическое научное издание отражает тематику важнейших направлений теоретических исследований по математике и механике. http:// vestnik.math.msu.su>start-in-fr.html
- 5. Алгебра и анализ: журнал.- Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН http://www.pdmi.ras.ru/AA
- 6. Дифференциальные уравнения: журнал. М.: МАИК "Наука /Интерпериодика".- http://nasb.gov.by/eng/publications/difur/index.php

5.4 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система Microsoft Windows
- 2. Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint, OneNote, Outlook, Publisher, Access)
- 3. Приложения Microsoft Visio
- 4. Антивирус Dr. Web Desktop Security Suite
- 5. Бесплатное средство просмотра файлов PDF Adobe Reader
- 6. Свободный файловый архиватор 7-Zip
- 7. https://yandex.ru/ бесплатный российский Интернет обозреватель Яндекс. Браузер
- 8. http://newgdz.com/spravochnik Справочник по высшей математике
- 9. http://aist.osu.ru/ АИССТ ОГУ автоматизированная интерактивная система сетевого тестирования ОГУ

6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в учебных аудиториях.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационнообразовательную среду филиала и ОГУ.

ЛИСТ согласования рабочей программы

Направление подготовки: 23.03.03 Эксплуатация транспорт	но-технологических м	машин и комплексо
код и наименование		40
Профиль: <u>Сервис и техническая эксплуатация транспороборудования (нефтегазодобыча)</u>	ртных и технологич	еских машин и
Дисциплина: Б1.Д.Б.16 Математика		
Форма обучения: <u>заочная</u> <i>(очная, очно-заочная, заочная</i>	я)	
Год набора		
РЕКОМЕНДОВАНА на заседании кафедры ООД и IT-технологий		
наименование кафедры		
протокол № 9 от "10" апреля 2025 г.		
Ответственный исполнитель, и.о. заведующего кафедрой	A.	
ООД и IT-технологий	STA	Д.К.Афанасова
наименование кафедры	подпись	расшифровка подписи
Исполнители:	94	П.С. А.1
<u>Доцент кафедры ООД и ІТ-технологий</u>	подпись	Д.К.Афанасова расшифровка подписи
ОДОБРЕНА на заседании НМС, протокол № 6 от « 15 » ма Председатель НМС		Л.Ю. Полякова расшифровка подписи
СОГЛАСОВАНО:		
И.о. зав.кафедрой ААХ	1	Е.С. Золотарев
	подпись	расшифровка подписи
Заведующий библиотекой	1 mu	С.Н. Козак