Минобрнауки России

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет»

Кафедра электроснабжения промышленных предприятий

УТВЕРЖДАЮ

Зам. директора по УМиНР

Му — Полякова Л.Ю. (поликъъ расинфровка подписи)

WELLPHOLO LO BAYA

2025 г

РАБОЧАЯ ПРОГРАММА

дисциплины

«Б1.Д.В.13 Переходные процессы в электроэнергетических системах»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

13.03.02 Электроэнергетика и электротехника

(код и наименование направления подготовки)

Электроснабжение

(наименование направленности (профиля) образовательной программы)

Квалификация *Бакалавр*

Форма обучения *Очная* Рабочая программа дисциплины «Б1.Д.В.13 Переходные процессы в электроэнергетических системах» /сост. С.Г. Шарипова. - Кумертау: Кумертауский филиал ОГУ, 2025

Рабочая программа предназначена обучающимся очной формы обучения по направлению подготовки 13.03.01 Электроэнергетика и электротехника

[©]Шарипова С.Г. 2025

[©] Кумертауский филиал ОГУ, 2025

1 Цели и задачи освоения дисциплины

Цели освоения дисциплины:

- формирование знаний студентов по расчету и анализу аварийных режимов при эксплуатации электроэнергетических систем (ЭЭС) на основе системного подхода;
- развитие инженерного мышления, основанное на понимании физики явлений, происходящих в ЭЭС при протекании аварийных процессов.

Задачи:

- познакомить с физическими явлениями аварийных процессов, происходящих при эксплуатации элементов электроэнергетических систем;
- познакомить с физическими явлениями аварийных процессов, происходящих при эксплуатации элементов электроэнергетических систем;
- научить производить расчет параметров электромагнитного переходного процесса при эксплуатации электроэнергетических систем;
- научить применять анализ факторов, влияющих на безопасность электроэнергетических систем.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательным дисциплинам (модулям) вариативной части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: *Б1.Д.Б.12 Информатика*, *Б1.Д.Б.15 Физика*, *Б1.Д.Б.17 Математика*, *Б1.Д.Б.20 Теоретические основы электротехники*

Постреквизиты дисциплины: *Б1.Д.В.10* Электрические станции и подстанции, *Б1.Д.В.16* Электроснабжение промышленных предприятий

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

	TC	П
Код и наименование	Код и наименование	Планируемые результаты обучения
формируемых компетенций	индикатора достижения	по дисциплине, характеризующие
формируемых компетенции	компетенции	этапы формирования компетенций
ПК*-2 Способен	ПК*-2-В-7 Применяет новые	Знать: - проблемы расчёта и анализа
анализировать режимы	методы исследования,	аварийных режимов; - виды
работы систем	режимов работы и расчета	устойчивости электроэнергетических
электроснабжения объектов	параметров основного	систем и способы их расчёта; -
	электроэнергетического	проблемы управления режимами
	оборудования источников и	работы электроэнергетических
	систем электроснабжения	систем; - требования, направленные
	ПК*-2-В-8 Применяет	на улучшения устойчивости
	методы расчёта переходных	энергосистем и мероприятия по
	процессов в линейных и	повышению устойчивости; -
	нелинейных электрических	особенности анализа режимов
	цепях, методы расчёта и	работы генераторов и двигателей.
	проектирования	Уметь: применять методы расчёта
	электроэнергетических	режимов переходных процессов в
	систем, методы расчёта	электроэнергетических системах.
	устойчивости генераторов	Владеть:
	станций и двигателей	методами расчета параметров
	нагрузки	электротехнических устройств и

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
	ПК*-2-В-9 Применяет практические расчёты различных видов короткого замыкания, выделяет практические критерии области устойчивости режимов и оценки запасов устойчивости систем электроснабжения	электроустановок.
ПК*-9 Способен использовать современное программное обеспечение для проектирования и эксплуатации систем электроснабжения	ПК*-9-В-5 Производит практические расчёты различных видов короткого замыкания, выделяет практические критерии области устойчивости режимов и оценки запасов устойчивости	Знать: современные информационные и телекоммуникационные систем для расчёта переходных процессов в электроэнергетических системах. Уметь: пользоваться современными информационными и телекоммуникационными систем. Владеть: навыками применения современных компьютерных систем для получения информации о результатах расчёта переходных процессов в электроэнергетических

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 9 зачетных единиц (324 академических часа).

	Трудоемкость,					
Вид работы	академических часов					
	5 семестр	6 семестр	всего			
Общая трудоёмкость	144	180	324			
Контактная работа:	48,25	52,5	100,75			
Лекции (Л)	16	18	34			
Практические занятия (ПЗ)	16	16	32			
Лабораторные работы (ЛР)	16	16	32			
Консультации		1	1			
Индивидуальная работа и инновационные формы учебных		1	1			
занятий						
Промежуточная аттестация (зачет, экзамен)	0,25	0,5	0,75			
Самостоятельная работа:	95,75	127,5	223,25			
- выполнение курсовой работы (КР);		27	27			
- самоподготовка (проработка и повторение лекционного						
материала и материала учебников и учебных пособий;	45,75	50,5	96,25			
- подготовка к лабораторным занятиям;	25	25	50			
- подготовка к практическим занятиям;	15	15	30			
- подготовка к рубежному контролю и т.п.)	10	10	20			
Вид итогового контроля (зачет, экзамен,	зачет	экзамен				

		Трудоемкость,				
Вид работы	ака	академических часов				
	5 семестр	6 семестр	всего			
дифференцированный зачет)						

Разделы дисциплины, изучаемые в 5 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	ПЗ	ЛР	работа
1	Сведения об электромагнитных переходных процессах	33	2	16		15
2	Характеристика переходного процесса при трёхфазном коротком замыкании	35	4		16	15
3	Установившийся режим короткого замыкания	15	2			13
4	Начальный момент внезапного изменения режима	17	2			15
5	Методы расчёта токов трёхфазного короткого замыкания	17	2			15
6	Несимметричные короткие замыкания	12	2			10
7	Замыкания в распределительных сетях и сетях промышленных предприятий	15	2			13
	Итого:	144	16	16	16	96

Разделы дисциплины, изучаемые в 6 семестре

№ раздела	Наименование разделов	Количество часов				
		всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
8	Режимы электрических систем, требования,	50	2	-	8	40
	предъявляемые к режимам					
9	Статическая устойчивость системы	44	4	2	8	30
10	Динамическая устойчивость	38	6	2	-	30
11	Устойчивость узлов нагрузки	48	6	12	-	30
	Итого:	180	18	16	16	130
	Всего:	324	34	32	32	226

4.2 Содержание разделов дисциплины

Раздел 1 Сведения об электромагнитных переходных процессах

- 1.1 Общие указания к расчёту коротких замыканий (КЗ). Система относительных единиц;
- 1.2 Составление схем замещения с использованием точного и приближённого приведения. Преобразование схем замещения и рекомендации по их преобразованию.

Раздел 2 Характеристика переходного процесса при трёхфазном коротком замыкании

- 2.1 Общая характеристика переходного процесса при КЗ в простейших трёхфазных цепях, питающихся от источника неограниченной мощности;
 - 2.2 Характеристика переходного процесса при КЗ в цепи, питающейся от генератора без АРВ;
 - 2.3 Характеристика переходного процесса при КЗ в цепи, питающейся от генератора с АРВ.

Раздел 3 Установившийся режим короткого замыкания

3.1 Параметры синхронного генератора

тора в установившемся режиме КЗ (отношение короткого замыкания, синхронные реактивности по продольной и поперечной осям X_d и X_q , реактивность рассеяния X_σ , предельный ток возбуждения , предельный ток возбуждения $I_{f_{nn}}$);

3.2 Влияние и учёт нагрузки в установившемся режиме КЗ (при питании нагрузки от генераторов без APB и с APB);

Раздел 4 Начальный момент внезапного изменения режима

- 4.1 Параметры синхронного генератора в начальный момент переходного процесса. Переходные и сверхпереходные ЭДС и реактивности генератора.
 - 4.2 Учёт нагрузки в начальный момент переходного процесса;

Раздел 5 Методы расчёта токов трёхфазного короткого замыкания

- 5.1 Метод эквивалентных ЭДС (расчёт установившегося, сверхпереходного и ударного токов K3);
 - 5.2 Метод расчётных кривых (расчёт по общему и индивидуальному изменению токов);
 - 5.3 Метод типовых кривых;
 - 5.4 Учёт питающей системы;

Раздел 6 Несимметричные короткие замыкания

6.1 Основные положения метода симметричных составляющих.

Уравнения Кирхгофа при несимметрии.

- 6.2 Сопротивления отдельных элементов токам различных последовательностей (синхронные машины, асинхронные двигатели, обобщённая нагрузка, силовые трансформаторы и автотрансформаторы);
- 6.3 Составление схем замещения различных последовательностей (прямой, обратной и нулевой). Соотношения между токами и напряжениями с двух сторон трансформатора со схемой соединения обмоток У/Д-11 и У0/Д-11;
- 6.4 Основные соотношения при несимметричных КЗ (однофазном, двухфазном, двухфазном на землю). Правило эквивалентности прямой последовательности;
- 6.5 Расчёт несимметричных КЗ методами расчётных кривых и типовых кривых. Соотношения между токами при различных видах КЗ;

Раздел 7 Замыкания в распределительных сетях и сетях промышленных предприятий

- 7.1 Простое замыкание на землю;
- 7.2 Особенности расчёта токов КЗ в сетях предприятий ТЭК и металлургии.

Раздел 8 Режимы электрических систем, требования, предъявляемые к режимам. Осуществимость режима, Устойчивость режима;

8.1 Качество переходного процесса. Задачи расчётов переходных процессов. Понятие о статической устойчивости. Понятие о динамической устойчивости;

Раздел 9 Статическая устойчивость системы

- 9.1 Предел мощности при приёмной системе бесконечной мощности. Роль индуктивного сопротивления системы. Влияние явнополюсности генератора на угловую характеристику мощности;
 - 9.2 Влияние АРВ генератора на предел передаваемой мощности;
 - 9.3 Действительный предел передаваемой мощности;
 - 9.4 Характеристика мощности при сложной связи генератора с приёмной системой;

Раздел 10 Динамическая устойчивость

- 10.1 Схемы замещения при КЗ. Угловая характеристика мощности в переходном режиме;
- 10.2 Динамическая устойчивость станции, работающей на шины бесконечной мощности. Правило площадей;
 - 10.3 Неустойчивый динамический переход. Определение зависимости $\delta = f(t)$;
 - 10.4 Уравнение относительного движения ротора генератора;
 - 10.5 Метод последовательных интервалов;

Раздел 11 Устойчивость узлов нагрузки

- 11.1 Статическая устойчивость асинхронных двигателей;
- 11.2 Вторичные критерии устойчивости нагрузки.

4.3 Лабораторные работы

№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов
1	2	Исследование переходного процесса при трёхфазном КЗ в цепи,	8
		питающейся от источника неограниченной мощности	
2	2	Влияние АРВ синхронного генератора на характер переходного	8
		процесса и его показатели при трёхфазном коротком замыкании	
3	8	Анализ переходного процесса при различных видах	8
		несимметричного короткого замыкания	
4	9	Исследование переходных процессов при замыкании на землю в	8
		распределительных сетях 6-35 кВ	
		Итого:	32

4.4 Практические занятия (семинары)

№ занятия № Тема		Тема	Кол-во
лу запятия	раздела	1 CMa	часов
1	1	Составление схем замещения.	16
2	9	Расчёт статической устойчивости и предела передаваемой по	2
		линии мощности	
3	10	Расчёты динамической устойчивости	2
4	11	Расчёты при качаниях генераторов	2
5	11	Математическое описание электромеханических переходных	2
		процессов в электроэнергетических системах для исследования	
		устойчивости	
6	11	Устойчивость режимов систем при малых возмущениях	2
7	11	Устойчивость режимов систем при больших возмущениях	2
		динамическая устойчивость	
8	11	Асинхронные режимы в электрических системах	2
9	11	Лавинные процессы в электроэнергетической системе	2
		Итого:	32

4.5 Курсовая работа (6 семестр)

Тема курсовой работы: «Расчёт токов короткого замыкания» (по вариантам)

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Лыкин, А. В. Электроэнергетические системы и сети: учебник для вузов / А. В. Лыкин. Москва: Издательство Юрайт, 2025. 360 с. (Высшее образование). ISBN 978-5-534-04321-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561003
- 2. Хрущев, Ю. В. Электроэнергетические системы и сети. Электромеханические переходные процессы: учебное пособие для вузов / Ю. В. Хрущев, К. И. Заподовников, А. Ю. Юшков. Москва: Издательство Юрайт, 2024. 153 с. (Высшее образование). ISBN 978-5-534-02713-6. Режим доступа: https://urait.ru/bcode/537222.

5.2 Дополнительная литература

- 1. Ушаков, В. Я. Электроэнергетические системы и сети: учебник для вузов / В. Я. Ушаков. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 393 с. (Высшее образование). ISBN 978-5-534-18061-9. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561302
- 2. Ананичева, С. С. Электроэнергетические системы и сети: модели развития: учебник для вузов / С. С. Ананичева, П. Е. Мезенцев, А. Л. Мызин; под научной редакцией П. И. Бартоломея. Москва: Издательство Юрайт, 2025. 148 с. (Высшее образование). ISBN 978-5-534-07671-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/565058
- 3. Воропай, Н. И. Переходные процессы в электроэнергетических системах. Основы электромеханических переходных процессов в электроэнергетических системах : учебное пособие / Н. И. Воропай, Д. Н. Ефимов, Е. В. Сташкевич. Иркутск : ИРНИТУ, 2020. 138 с. Режим доступа: https://e.lanbook.com/book/325007.

5.3 Периодические издания

- 1. Электричество: журнал. Подписной индекс 71106. Федеральное государственное бюджетное образовательное учреждение высшего образования Национальный исследовательский университет МЭИ, ISSN 0013-5380, 2025/
- 2. Энергобезопасность и энергосбережение: журнал. Подписной индекс (Роспечать) 84676 и 46577. Частное учреждение высшего образования Московский институт энергобезопасности и энергосбережения, ISSN 2071-2219, 2025.
- 3. Теплоэнергетика. Теплоснабжение: журнал. Подписной индекс 18323. Общество с ограниченной ответственностью Международная академическая издательская компания "Наука/Интерпериодика", ISSN 0040-3636, 2025.
- 4. Новости электротехники: электрон. журнал. Подписной индекс 14222. Закрытое акционерное общество "Новости Электротехники". Режим доступа: http://www.news.elteh.ru.

5.4 Интернет-ресурсы

- http://electrichelp.ru/elektricheskie-mashiny-v-pomoshh-studentu/ информационный проект для работников энергетических служб и студентов электротехнических вузов
- http://www.dom-eknig.ru/texnicheskie/19960-elektromehanika.html каталог бесплатных книг по электромеханике (электронные ресурсы);
- https://openedu.ru/ «Открытое образование»; Каталог курсов, МООК: «Электрические машины».
- https://minobrnauki.gov.ru Официальный сайт Министерства науки и высшего образования Российской Федерации;
 - http://www.edu.ru Федеральный портал «Российское образование»;
- http://window.edu.ru Портал информационно-коммуникационных технологий в образовании;
 - http://rucont.ru Национальный цифровой ресурс «РУКОНТ» ЭБС ОГУ;
 - http://www.biblioclub.ru Университетская библиотека онлайн;
 - http://znanium.com ЭБС Znanium издательства «Инфра-М»;
- https://aist.osu.ru Система АИССТ Автоматизированная Интерактивная Система Сетевого Тестирования

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы

- компьютеризированные посадочные места по количеству обучающихся;
- компьютеризированное рабочее место преподавателя;
- доска аудиторная;
- комплект учебно-методической документации;
- информационно-дидактическое обеспечение;
- информационные стенды;
- наглядные пособия;
- операционная система РЕД ОС
- пакет офисных приложений LibreOffice (Writer, Calc, Impress, Math, Draw, Base)
- САПР Компас-3D
- 7ziр архиватор: Р7Ziр
- веб-браузер с поддержкой ГОСТовского шифрования для работы с ГИС (госИС): Chromium
- программа для создания и обработки растровой графики с частичной поддержкой работы с векторной графикой: GIMP
- простой редактор файлов PDF: PDFedit
- https://yandex.ru/ бесплатный российский Интернет обозреватель Яндекс. Браузер
- http://aist.osu.ru/ AUCCT $O\Gamma Y$ автоматизированная интерактивная система сетевого тестирования $O\Gamma Y$.

6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в учебных аудиториях. Для проведения лабораторного практикума предназначена специализированная лаборатория:

- лаборатория «Электроснабжение» (аудитория 2104).

Для проведения лабораторных работ используются универсальные лабораторные стенды. Базовые эксперименты выполняются на комплектах типового лабораторного оборудования.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети «Интернет», и обеспечением доступа в электронную информационно-образовательную среду филиала и ОГУ.

К рабочей программе прилагаются:

• Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Переходные процессы в электроэнергетических системах» для обучающихся по направлению подготовки 13.03.02 Электроэнергетика и электротехника;

Методические рекомендации для обучающихся по освоению дисциплины.

ЛИСТ согласования рабочей программы

Направление подготовки 13.03.02 Электроэнергетика и электротехника код и наименование Профиль: Электроснабжение Дисциплина: <u>Б1.Д.В.13 Переходные процессы в электроэнергетических системах</u> Форма обучения: очная Год набора *2025* РЕКОМЕНДОВАНА на заседании кафедры электроснабжения промышленных предприятий наименование кафедры протокол № 8 от "04 " апреля 2025 г. Ответственный исполнитель, и.о. зав. кафедрой электроснабжения промышленных предприятий наименование кафедры Исполнители: доцент каф. ЭПП должность подпись должность подпись расшифровка подписи ОДОБРЕНА на заседании НМС, протокол № 6 от «15» мая 2025 г. Председатель НМС Л.Ю. Полякова расшифровка подписи СОГЛАСОВАНО: И.о. зав. кафедрой ЭПП Заведующий библиотекой подпись расшифровка подписи