Минобрнауки России

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет»

Кафедра электроснабжения промышленных предприятий

УТВЕРЖДАЮ

Зам. директора по УМиНР

обрати Полякова Л.Ю. (поприсъ подписи)

2025 г

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б1.Д.Б.20 Теоретические основы электротехники»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

13.03.02 Электроэнергетика и электротехника

(код и наименование направления подготовки)

<u>Электроснабжение</u>

(наименование направленности (профиля) образовательной программы)

Квалификация *Бакалавр*

Форма обучения *Очная* Рабочая программа дисциплины «Б1.Д.Б.20 Теоретические основы электротехники» /сост. В.И. Андросов. - Кумертау: Кумертауский филиал ОГУ, 2025

Рабочая программа предназначена обучающимся очной формы обучения по направлению подготовки 13.03.02 Электроэнергетика и электротехника

[©] Андросов В.И., 2025

[©] Кумертауский филиал ОГУ, 2025

1 Цели и задачи освоения дисциплины

Цель освоения дисциплины — формирование профессиональных знаний и умений в области использования методов анализа и моделирования линейных и нелинейных электрических и магнитных цепей.

Задачи:

- познакомить с основами постановки и решения исследовательских задач, проведения лабораторных экспериментов на реальном физическом и виртуальном оборудовании по основам электротехники;
 - изучить основные законы теоретических основ электротехники;
 - научить методам анализа, синтеза и моделирования электрических цепей.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Б1.Д.Б.12 Информатика, Б1.Д.Б.15 Физика

Б1.Д.Б.22 Б1.Д.Б.23 Постреквизиты дисциплины: Электрические машины, Электрические и электронные аппараты, Б1.Д.Б.24 Б1.Д.В.2 Основы Электроника, электроэнергетики, Б1.Д.В.5 Электробезопасность, Б1.Д.В.6 Специализированное программное обеспечение для проектирования систем электроснабжения. Электроэнергетические системы и сети, Б1.Д.В.8 Автоматизированный электропривод, Б1.Д.В.13 Переходные процессы в электроэнергетических системах, Б1.Д.В.14 Техника высоких Б1.Д.В.15 Эксплуатационный техническая напряжений, контроль диагностика и электрооборудования

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
ОПК-3 Способен	ОПК-3-В-1 Применяет	Знать:
применять	математический аппарат	основы применения
соответствующий	аналитической геометрии, линейной	соответствующего физико-
физико-	алгебры, дифференциального и	математического аппарата,
математический	интегрального исчисления функции	методов анализа и моделирования,
аппарат, методы	одной переменной	теоретического и
анализа и	ОПК-3-В-2 Применяет	экспериментального исследования
моделирования,	математический аппарат теории	при расчете электрических схем.
теоретического и	функции нескольких переменных,	Уметь:
экспериментального	теории функций комплексного	применять математическую
исследования при	переменного, теории рядов, теории	модель расчета электрических
решении	дифференциальных уравнений	схем, анализировать и
профессиональных	ОПК-3-В-5 Демонстрирует	моделировать режимы работы
задач	понимание физических явлений и	схем.

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
	умеет применять физические законы механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач	Владеть: методами теоретического и экспериментального исследования при расчете параметров режимов работы электрических схем.
ОПК-4 Способен использовать методы анализа и моделирования электрических цепей и электрических машин	ОПК-4-В-1 Использует методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока ОПК-4-В-2 Использует методы расчета переходных процессов в электрических цепях постоянного и переменного тока ОПК-4-В-3 Применяет знания теории электромагнитного поля и цепей с распределенными параметрами	Знать: -теоретические основы электротехники; -основные понятия и законы теории электрических и магнитных цепей; -методы анализа цепей постоянного и переменного токов в стационарных и переходных режимах. Уметь: - использовать законы и методы расчета электрических, магнитных и электронных цепей; - составлять модели (схемы замещения) магнитных, электрических, электронных и электромагнитных цепей. Владеть: -методами расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях; -навыками проведения лабораторных экспериментов по теории электрических цепей.
ОПК-6 Способен проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности	ОПК-6-В-1 Выбирает средства измерения, проводит измерения электрических и неэлектрических величин, обрабатывает результаты измерений и оценивает их погрешность	Знать: - основные технические средства для измерения и контроля параметров электрооборудования. Уметь: - использовать технические средства измерений различных классов. Владеть: - методикой проведения электротехнических измерений.

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 11 зачетных единиц (396 академических часов).

	Трудоемкость,				
Вид работы	академических часов				
	2 семестр	3 семестр	всего		
Общая трудоёмкость	180	216	396		
Контактная работа:	67,25	50,5	117,75		
Лекции (Л)	34	16	50		
Практические занятия (ПЗ)	16	16	32		
Лабораторные работы (ЛР)	16	16	32		
Консультации	1	1	2		
Индивидуальная работа и инновационные формы		1	1		
учебных занятий					
Промежуточная аттестация (зачет, экзамен)	0,25	0,5	0,75		
Самостоятельная работа:	112,75	165,5	278,25		
- выполнение курсовой работы (КР);		30	30		
- самоподготовка (проработка и повторение	52	54	106		
лекционного материала и материала учебников и					
учебных пособий;					
- подготовка к лабораторным занятиям;	8	16	24		
- подготовка к практическим занятиям;	8	16	24		
- подготовка к рубежному контролю);	8,75	13,5	22,25		
- подготовка к экзаменам	36	36	72		
Вид итогового контроля (зачет, экзамен,	экзамен	экзамен			
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 2 семестре

		Количество часов				
<u>№</u> раздела	Наименование разделов	всего	аудиторная работа		внеауд.	
			Л	П3	ЛР	работа
1	Основные положения теории электромагнитного поля и их применение к теории электрических цепей. Методы расчёта цепей. Электрические цепи постоянного тока.	\(\)	8		10	32
2	Электрические цепи однофазного синусоидального тока	78	16	8	6	48
3	Трёхфазные цепи	28	6	4		18
4	Периодические несинусоидальные токи в электрических цепях	24	4	4		16
	Итого:	180	34	16	16	114

	Наименование разделов	Количество часов				
№		всего	аудиторная			внеауд. работа,
раздела	1 ,,		работа			
			Л	П3	ЛР	экзамен
5	Переходные процессы в линейных	42	2	12	4	24
3	электрических цепях	42	2	12	4	24
6	Нелинейные электрические цепи постоянного	24	2		2	20
U	и переменного тока	24	2		2	20
7	Магнитные цепи	26	4		2	20
8	Четырехполюсники и фильтры	32	2	4	2	24
9	Электрические цепи с распределенными	32	4		4	24
9	параметрами	32				
10	Электростатическое поле. Электрическое и	24	2		2	20
10	магнитное поля постоянного тока	24				
	Курсовая работа	36				36
	Итого:	216	16	16	16	168
	Всего:	396	50	32	32	282

4.2 Содержание разделов дисциплины

Раздел 1. Основные положения теории электромагнитного поля и их применение к теории электрических цепей. Методы расчёта цепей. Электрические цепи постоянного тока.

Основные этапы развития электротехники и ее теоретических основ, отечественная школа теоретической электротехники. Общая физическая основа задач электромагнитного поля и теории электрических и магнитных цепей. Электрические цепи постоянного тока. Граф цепи. Законы Ома и Кирхгофа. Полная система уравнений электрических цепей. Основные уравнения и основанные на них методы расчета: узловых потенциалов, контурных токов, наложения, эквивалентных преобразований, наложения; активного генератора.

Раздел 2. Электрические цепи однофазного синусоидального тока.

Синусоидальные ЭДС, напряжения и токи. Изображение синусоидальных функций времени комплексными числами. Синусоидальный ток в цепи с R, L и C. Треугольники сопротивлений и проводимостей. Законы Ома и Кирхгофа в комплексной форме. Активная, реактивная и полная мощности. Треугольник мощностей. Измерение мощности ваттметром. Резонанс при последовательном и параллельном соединении элементов цепи. Резонанс в сложных цепях. Индуктивно-связанные цепи. Взаимная индуктивность, коэффициенты связи. Согласованные и встречные включения. Расчет сложных электрических цепей с взаимной индукцией.

Раздел 3. Трёхфазные цепи.

Многофазные цепи и системы и их классификация. Схемы трёхфазных цепей. Фазные и линейные напряжения и токи. Расчеты трехфазных цепей в симметричных и несимметричных режимах со статической нагрузкой. Мощность в трёхфазных цепях. Измерение мощности трёхфазных цепей. Вращающееся магнитное поле. Метод симметричных составляющих.

Раздел 4. Периодические несинусоидальные токи в электрических цепях.

Определение коэффициентов ряда Фурье. Особенности расчёта линейных цепей с источниками несинусоидальных напряжений и токов. Активная, реактивная и полная мощности. Резонанс в цепях с несинусоидальными источниками.

Раздел 5. Переходные процессы в линейных электрических цепях.

Понятие о переходном процессе в линейной электрической цепи. Законы коммутации. Классический метод расчета. Независимые и зависимые начальные условия. Свободные и принужденные составляющие. Способы составления характеристических уравнений.

Переходные процессы в цепях с одним накопителем энергии. Переходные процессы в последовательной цепи R, L, C при ее включении на постоянное и синусоидальное напряжение. Операторный метод расчета. Преобразование Лапласа. Уравнения цепи в операторной форме. Законы Ома и Кирхгофа в операторной форме. Эквивалентные операторные схемы. Переход от изображения к оригиналу. Теорема разложения.

Раздел 6. Нелинейные электрические цепи постоянного и переменного тока.

Понятия об элементах и свойствах нелинейных цепей. Классификация нелинейных элементов. Графические, графоаналитические и численные методы расчета при последовательном, параллельном и смешанном соединении элементов. Особенности расчета режимов нелинейных цепей при переменных токах и напряжениях. Общая характеристика методов расчета. Цепи с нелинейными индуктивностями – катушками с ферромагнитным сердечником. Эквивалентные параметры и схемы замещения катушки индуктивности.

Раздел 7. Магнитные цепи.

Магнитные свойства веществ. Основные величины, характеризующие магнитные цепи. Аналогия уравнений магнитных и электрических цепей. Закон полного тока. Расчет магнитных цепей. Расчёты электромагнитных устройств с постоянными магнитными потоками при не разветвлённом и разветвлённом сердечнике. Основные соотношения для трансформатора со стальным сердечником. Векторная диаграмма трансформатора. Феррорезонансы напряжения и тока.

Раздел 8. Четырехполюсники и фильтры.

Четырехполюсник и его основные уравнения. Определение коэффициентов четырехполюсника. Схемы замещения. Определение параметров схем замещения и их связь с коэффициентами четырехполюсника. Характеристическое сопротивление и постоянная (мера) передачи. Электрические фильтры. Назначение и классификация фильтров. Фильтры НЧ, фильтры ВЧ, полосовые и заграждающие фильтры типа k.

Раздел 9. Электрические цепи с распределенными параметрами.

Уравнения линии с распределенными параметрами. Решение уравнений однородной линии при установившемся синусоидальном режиме. Бегущие волны в линии. Параметры волн. Линия без искажений. Линия без потерь. Согласованный режим работы линии. Переходные процессы в цепях с распределенными параметрами.

Раздел 10. Электростатическое поле. Электрическое и магнитное поля постоянного тока.

Составные части электромагнитного поля: электрическое и магнитное поля. Основные дифференциальные физические величины, характеризующие электромагнитное поле. Основные величины, характеризующие электростатическое поле. Электростатическое поле в веществе. Свободные и связанные заряды. Теорема Гаусса. Уравнения Лапласа и Пуассона. Граничные условия. Плоскопараллельное поле двух заряженных осей. Теорема единственности и ее зеркальных изображений. Основные величины, Метод характеризующие следствия. электрическое поле постоянных токов в проводящей среде. Уравнение Лапласа. Законы Ома, Кирхгофа и Джоуля-Ленца в дифференциальной форме. Граничные условия на поверхности раздела двух сред. Применение методов расчета электростатических полей к расчету электрических полей постоянных токов. Основные величины, характеризующие магнитное поле. Закон Ампера. Закон Био-Савара-Лапласа. Магнитное поле в веществе. Принцип непрерывности магнитного потока и закон полного тока в интегральной и дифференциальной формах. Граничные условия на поверхности раздела двух сред. Уравнения Лапласа и Пуассона. Аналогии магнитного поля с электростатическим полем. Методы расчета магнитных полей: метод зеркальных изображений. Понятие о магнитном экранировании. Расчет индуктивности. Индуктивность двухпроводной линии.

4.3 Лабораторные работы

№ ЛР <u>№</u> раздела		Наименование лабораторных работ	
		тинменование засоораторных расот	часов
1	1	Законы Кирхгофа	2
2	1	Закон Ома	2
3	1	Линейные резисторы	2
4	1	Резисторы с зависимостью от освещенности (фоторезисторы)	2
5	1	Последовательное соединение резисторов	2
6	2	Параллельное соединение резисторов	2
7	2	Цепь со смешанным последовательно-параллельным	2.
/		соединением резисторов	2
8	2	Делитель напряжения при работе вхолостую	2
9	5	Делитель напряжения под нагрузкой	2
10	5	Последовательное соединение источников напряжения (ЭДС)	2
11	6	Параллельное соединение источников напряжения (ЭДС)	2
12	7	Электрическая мощность и работа	2
13	8	Согласование источника и нагрузки по напряжению, току и	2.
13		мощности	2
14	9	Процессы заряда и разряда конденсатора	4
15	10	Процессы включения под напряжение и короткого замыкания	2
13		катушки индуктивности	<u>∠</u>
		Итого:	32

4.4 Практические занятия (семинары)

<u>№</u> занятия	№ раздела	Тема	Кол-во часов
1	1	Линейные электрические цепи постоянного тока	8
2	2	Однофазные электрические цепи синусоидального тока	8
3	3	Трехфазные цепи.	4
4	4	Несинусоидальные периодические токи и напряжения.	4
5	8	Четырехполюсники	4
6	5	Переходные процессы в линейных электрических цепях	4
		Итого:	32

4.5 Курсовая работа (3 семестр)

1. Расчет переходных процессов в линейных электрических цепях с сосредоточенными параметрами.

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Бессонов, Л. А. Теоретические основы электротехники. В 2 т. Том 1. Электрические цепи: учебник для вузов / Л. А. Бессонов. 12-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 831 с. Режим доступа: https://urait.ru/bcode/517560.
- 2. Бессонов, Л. А. Теоретические основы электротехники. В 2 т. Том 2. Электромагнитное поле: учебник для вузов / Л. А. Бессонов. 12-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 389 с. Режим доступа: https://urait.ru/bcode/ 510545.

5.2 Дополнительная литература

- 1. Теоретические основы электротехники. Сборник задач: учебное пособие для вузов / Л. А. Бессонов [и др.]; ответственный редактор Л. А. Бессонов. 5-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 528 с. (Высшее образование). ISBN 978-5-9916-3486-1. Режим доступа: https://urait.ru/bcode/ 508127.
- 2. Теоретические основы электротехники: линейные электрические цепи: учебное пособие / К. А. Клименко, Д. А. Поляков, И. Л. Захаров, О. П. Куракина; Омский государственный технический университет. Омск: Омский государственный технический университет (ОмГТУ), 2020. 228 с. ISBN 978-5-8149-2991-4. Режим доступа: https://biblioclub.ru/index.php?page=book&id=682276.
- 3. Матафонова, Е. П. Теоретические основы электротехники: учебное пособие / Е. П. Матафонова, А. В. Попов; Дальневосточный государственный технический рыбохозяйственный университет. Владивосток: Дальрыбвтуз, 2020. 240 с.: ил. ISBN 978-5-88871-740-0. Режим доступа: https://biblioclub.ru/index.php?page=book&id=615572.
- 4. Башарин, С. А. Теоретические основы электротехники: Теория электрических цепей и электромагнитного поля: учеб.пособие для студентов вузов / С. А. Башарин, В. В. Федоров 3-е изд., испр. М.: Издательский центр «Академия», 2008. 304с. ISBN 978-5-7695-5179-6.

5.3 Периодические издания

- 1. Электричество: журнал. Подписной индекс 71106. Федеральное государственное бюджетное образовательное учреждение высшего образования Национальный исследовательский университет МЭИ, ISSN 0013-5380, 2019.
- 2. Энергобезопасность и энергосбережение: журнал. Подписной индекс (Роспечать) 84676 и 46577. Частное учреждение высшего образования Московский институт энергобезопасности и энергосбережения, ISSN 2071-2219, 2019.
- 3. Новости электротехники: электрон. журнал. Подписной индекс 14222. Закрытое акционерное общество "Новости Электротехники". Режим доступа: http://www.news.elteh.ru.

5.4 Интернет-ресурсы

http://www.mon.gov.ru – Официальный сайт Министерства образования и науки РФ;

http://www.edu.ru – Федеральный портал «Российское образование»;

http://window.edu.ru — Портал информационно-коммуникационных технологий в образовании;

http://rucont.ru - Национальный цифровой ресурс «РУКОНТ» ЭБС ОГУ;

http://www.biblioclub.ru - Университетская библиотека онлайн;

http://znanium.com - ЭБС Znanium издательства «Инфра-М».

<u>http://electricalschool.info/</u> - Школа для электрика - сайт для электриков, людей, имеющих электротехническое образование, стремящихся к знаниям и желающих совершенствоваться и развиваться в своей профессии.

http://electrolibrary.info/ - Электротехническая библиотека

https://aist.osu.ru Автоматизированная интерактивная система сетевого тестирования — АИССТ

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы

- 1. Операционная система РЕД ОС
- 2. Пакет офисных приложений LibreOffice (Writer, Calc, Impress, Math, Draw, Base)
- 3. САПР Компас-3D
- 4. 7zір архиватор: Р7Zір
- 5. Веб-браузер с поддержкой ГОСТовского шифрования для работы с ГИС (госИС): Chromium
- 6. Программа для создания и обработки растровой графики с частичной поддержкой работы с векторной графикой: GIMP
- 7. Простой редактор файлов PDF: PDFedit
- 8. https://yandex.ru/ бесплатный российский Интернет обозреватель Яндекс. Браузер
- 9. http://newgdz.com/spravochnik Справочник по высшей математике
- 10. http://aist.osu.ru/ АИССТ ОГУ автоматизированная интерактивная система сетевого тестирования ОГУ

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Для проведения лабораторного практикума предназначены специализированные лаборатории: 2102 Лаборатория «Электротехника и учет электроэнергии»

Для проведения лабораторных работ используются универсальные лабораторные стенды. Базовые эксперименты выполняются на комплектах типового лабораторного оборудования «ТОЭ».

Помещение для самостоятельной работы обучающихся оснащено компьютерной техникой, подключенной к сети «Интернет», с обеспечением доступа в электронную информационно-образовательную среду филиала и ОГУ.

К рабочей программе прилагаются:

- Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;
- Методические рекомендации для проведения практических и лабораторных занятий, для выполнения курсовой работы по дисциплине.

ЛИСТ согласования рабочей программы

Направление подготовки <u>13.03.02 Электроэнергети</u> код и наимено		
Профиль: <u>Электроснабжение</u>		
Дисциплина: <u>Б1.Д.Б.20 Теоретические основы элект</u>	<u>протехники</u>	
Форма обучения: <u>очная</u>		
Год набора <u>2025</u>		
РЕКОМЕНДОВАНА на заседании кафедры электроснабжения промышленных предприятий наименование кафедры		
протокол № 8 от " 04 " мая 2025г.		
Ответственный исполнитель, и.о. зав. кафедрой электроснабжения промышленных предприятий наименование кафедры	nomics	С.Г. Шарипова расшифровка подписи
Исполнители: доцент каф. ЭПП должность	подпись	В.И. Андросов расшифровка подписи
должность	подпись	расшифровка подписи
ОДОБРЕНА на заседании НМС, протокол № 6 от "1	5" мая 2025г.	
Председатель НМС	nodnucs Tilef_	Л.Ю. Полякова расшифровка подписи
СОГЛАСОВАНО:		
И.о. зав. кафедрой ЭПП	noontice	С.Г. Шарипова расшифровка подписи
Заведующий библиотекой	подпись	С.Н. Козак расшифровка подписи