МИНОБРНАУКИ РОССИИ

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

Кафедра общеобразовательных дисциплин и ІТ-технологий

УТВЕРЖДАЮ
Зам Лиректора по УМиНР
Полякова Л.Ю.
(нодпись: расшифровка подписи)
по учено по уч

РАБОЧАЯ ПРОГРАММА

дисциплины

«Б1.Д.Б.15 Физика»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>09.03.01 Информатика и вычислительная техника</u>
(код и наименование направления подготовки)

<u>Автоматизированные системы обработки информации и управления</u> (наименование направленности (профиля) образовательной программы)

Квалификация <u>Бакалавр</u> Форма обучения <u>Очная</u> Рабочая программа дисциплины «E1.Д.E.15 Физика» /сост. Симонова М.И. - Кумертау: Кумертауский филиал ОГУ, 2025

Рабочая программа предназначена обучающимся очной формы по направлению подготовки 09.03.01 Информатика и вычислительная техника

[©] Симонова М.И., 2025

[©] Кумертауский филиал ОГУ, 2025

1 Цели и задачи освоения дисциплины

Цель освоения дисциплины: формирование представления об основных физических понятиях и методах, роли и месте физики в различных сферах человеческой деятельности.

Задачи:

- изучить законы окружающего мира в их взаимосвязи;
- овладеть фундаментальными принципами и методами решения научно-технических задач;
- освоить основные физические теории, позволяющие описать явления в природе, и пределы применимости этих теорий для решения современных и перспективных технологических задач.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: *Б1.Д.Б.16* Электротехника и электроника, *Б1.Д.Б.26* Безопасность жизнедеятельности

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1-В-1 Знает основы математики, физики, вычислительной техники и программирования ОПК-1-В-2 Умеет решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования ОПК-1-В-3 Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности	Знать: - основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях. Уметь: - использовать методы физического и математического моделирования к решению конкретных естественнонаучных и технических задач; - истолковывать смысл физических величин и понятий. Владеть: - навыками применения основных методов физикоматематического анализа для решения естественнонаучных задач; - навыками обработки и

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	
		интерпретирования результатов естественнона- учного эксперимента; - навыками использования методов физического моделирования в учебной деятельности	

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 8 зачетных единиц (288 академических часов).

	Трудоемкость,				
Вид работы	академических часов				
	1 семестр	2 семестр	всего		
Общая трудоёмкость	144	144	288		
Контактная работа:	44,25	35,25	79,5		
Лекции (Л)	28	18	46		
Практические занятия (ПЗ)		16	16		
Лабораторные работы (ЛР)	16		16		
Консультации		1	1		
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	0,5		
Самостоятельная работа:	99,75	108,75	208,5		
- самостоятельное изучение разделов (модули из раздела	24,75	24,75	49,5		
1Механика, 4 Постоянный ток, 7 Квантовая физика);					
- самоподготовка (проработка и повторение лекционного	15	12	54		
материала и материала учебников и учебных пособий;					
- изучение разделов курса в системе электронного	15	12			
обучения;					
- подготовка к лабораторным занятиям;	30	12	30		
- подготовка к практическим занятиям;		12	12		
- подготовка к рубежному контролю;	15	36	27		
-подготовка к экзамену.			36		
Вид итогового контроля (зачет, экзамен,	зачет	экзамен			
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 1 семестре

			Количество часов			
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	ПЗ	ЛР	работа
1	Физические основы механики	46	10		4	32
2	Молекулярная физика и термодинамика	36	6		4	26
3	Электростатика	36	8		4	24
4	Постоянный электрический ток	26	4		4	18
	Итого:	144	28		16	100

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
5	Электромагнетизм	46	8	10		28
6	Волновая оптика	36	4	4		28
7	Квантовая физика	36	4	2		30
8	Физика атомного ядра	26	2			24
	Итого:	144	18	16		110
	Всего:	288	46	16	16	210

4.2 Содержание разделов дисциплины

Раздел 1. Физические основы механики. Физика как наука. Методы физического исследования: опыт, гипотеза, теория. Кинематика материальной точки. Динамика материальной точки. Фундаментальные взаимодействия. Импульс. Закон сохранения импульса. Энергия, механическая работа, мощность. Механика твердого тела. Основное уравнение динамики вращательного движения. Кинематическое описание движения жидкости.

Раздел 2. Молекулярная физика и термодинамика. Молекулярно-кинетическая теория (МКТ) идеальных газов. Распределение Максвелла. Среднее число столкновений и средняя длина свободного пробега молекул. Явления переноса в термодинамически неравновесных системах. Основы термодинамики. Теплоемкость идеального газа. Классическая теория теплоемкости и ее недостатки. Энтропия.

Раздел 3. Электростатика. Электродинамика. Электрический заряд, его свойства. Закон сохранения электрического заряда. Закон Кулона. Диэлектрическая проницаемость. Электрическое поле и его характеристики (напряженность и потенциал). Связь потенциала с напряженностью поля. Эквипотенциальные поверхности. Объемная, поверхностная и линейная плотности зарядов. Проводники в электрическом поле. Напряженность поля у поверхности проводника. Электростатическая защита.

Раздел 4. Постоянный электрический ток. Электрический ток. Условия существования постоянного тока. Характеристики тока. Сторонние силы. Электродвижущая сила (ЭДС). Напряжение. Источники ЭДС. Закон Ома для участка цепи. Сопротивление проводников. Зависимость сопротивления металлов от температуры. Закон Ома в дифференциальной форме. Работа и мощность тока. Закон Джоуля-Ленца. Закон Ома для неоднородного участка цепи, его анализ. Разветвленные цепи. Правила Кирхгофа для разветвленных цепей. Соединение источников тока и резисторов.

Раздел 5. Электромагнетизм. Закон Ампера. Действие магнитного поля на движущийся заряд. Сила Лоренца. Вихревой характер магнитного поля. Теорема о циркуляции вектора магнитной индукции. Магнитное поле соленоида и тороида. Магнитный поток. Работа перемещения контура с током в магнитном поле. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Явление самоиндукции и взаимоиндукции. Индуктивность. Энергия магнитного поля. Электромагнитные колебания. Анализ электромагнитных и механических колебаний (затухающие, незатухающие, вынужденные). Метод векторных диаграмм. Сложение гармонических колебаний. Резонанс. Переменный ток. Сопротивление, емкость и индуктивность в цепи переменного тока. Закон Ома для переменного тока. Резонанс напряжений. Резонанс токов. Мощность, выделяемая в цепи переменного тока.

Раздел 6. Волновая оптика. Интерференция света. Методы наблюдения интерференции света. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на одной щели.

Раздел 7. Квантовая физика. Тепловое излучение и его законы. Внешний фотоэффект. Уравнение Эйнштейна для внешнего фотоэффекта. Теория атома водорода по Бору. Постулаты Бора.

Раздел 8. Физика атомного ядра. Размер, состав и заряд атомного ядра. Дефект массы и энергия связи ядра. Модели ядра. Закон радиоактивного распада.

4.3 Лабораторные работы

№ занятия	нятия № тема		Кол-во часов
1	1	Кинематика материальной точки. Скорость и ускорение точки. Полное ускорение. Вращательное движение.	2
2	1	Законы Ньютона. Силы в механике.	2
3	2	Основное уравнение МКТ. Уравнение состояния идеального газа, его законы.	2
4	2	I начало термодинамики.	2
5	3	Закон Кулона. Напряженность электрического поля.	2
6	3	Потенциал электрического поля. Конденсаторы.	2
7	4	Закон Ома для полной цепи	2
8	4	Правила Кирхгофа для разветвленных цепей	2
		Итого:	16

4.4 Практические занятия (семинары)

№ ЛР <u>№</u> раздела		Наименование лабораторных работ	
		ттаимснование лаоораторных раоот	часов
1.	5	Магнитное поле.	4
2.	5	Электромагнитная индукция.	2
3.	5	Свободные колебания в <i>RLC</i> -контуре.	2
4.	6	Определение радиуса кривизны линзы с помощью колец Ньютона.	2
5.	6	Интерференционный опыт Юнга.	4
6.	7	Внешний фотоэффект.	2
		Итого:	16

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Кравченко, Н. Ю. Физика : учебник и практикум для вузов / Н. Ю. Кравченко. Москва : Издательство Юрайт, 2024. 300 с. (Высшее образование). ISBN 978-5-534-01027-5. Режим доступа: https://urait.ru/book/fizika-536734.
- 2. Трофимова, Т. И. Курс физики : учеб.пособие для вузов / Т. И. Трофимова 16-е изд., перераб. и доп. М.: Издательский центр «Академия», 2015. 560с. ISBN 978-5-7695-4.
- 3. Трофимова, Т. Й. Руководство к решению задач по физике : учеб. пособие для бакалавров / Т. И. Трофимова. 2-е изд., перераб. и доп.. Москва : Юрайт, 2016. 265 с. (Бакалавр. Базовый курс). ISBN 978-5-9916-2328-5.

5.2 Дополнительная литература

1. Айзенцон, А. Е. Физика: учебник и практикум для вузов / А. Е. Айзенцон. — Москва: Издательство Юрайт, 2023. — 335 с. — (Высшее образование). — ISBN 978-5-534-00487-8. — Режим доступа: https://urait.ru/bcode/511373.

2. Никеров, В. А. Физика : современный курс : учебник / В. А. Никеров. — 4-е изд. — Москва : Дашков и К°, 2019. — 452 с. : ил. — ISBN 978-5-394-03392-6. — Режим доступа: https://biblioclub.ru/index.php?page=book&id=573262.

5.3 Периодические издания

- 1. https://universarium.org/catalog «Универсариум», Медиотека: «Физика. Лекции» http://aist.osu.ru/ АИССТ ОГУ автоматизированная интерактивная система сетевого тестирования ОГУ
 - 2. http://en.edu.ru/ Естественно-научный образовательный портал
- 3. Вестник Московского Университета. Серия 1. Математика. Механика: журнал. М.: Агенство «Роспечать» периодическое научное издание отражает тематику важнейших направлений теоретических исследований по математике и механике. start-in-fr.html">http://vestnik.math.msu.su>start-in-fr.html

5.4 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система Microsoft Windows
- 2. Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint, OneNote, Outlook, Publisher, Access)
- 3. Приложения Microsoft Visio
- 4. Антивирус Dr. Web Desktop Security Suite
- 5. Бесплатное средство просмотра файлов PDF Adobe Reader
- 6. Свободный файловый архиватор 7-Zip
- 7. https://yandex.ru/ бесплатный российский Интернет обозреватель Яндекс. Браузер

6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в кабинете физики. Лабораторные занятия проводятся в лаборатории физики.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории. Посадочные места по количеству обучающихся, (13 парт и 26 ученических стульев); место преподавателя (1 стол, 1 стул, 1 ноутбук с лицензионным программным обеспечением, с доступом к сети Интернет); комплект учебно-наглядных пособий («Фундаментальные физические константы», «Основные единицы системы СИ», «Методические материалы»); комплект учебно-методической документации, в том числе на электронном носителе (учебники и учебные пособия, карточки-задания, комплекты тестовых заданий, методические рекомендации и разработки); комплект учебного оборудования (штангенциркуль, набор гирь, секундомер, генератор звуковых частот); лабораторная установка («Механика-2»).

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду филиала и ОГУ.

ЛИСТ согласования рабочей программы

Направление подготовки: <u>09.03.01 Информатика и вычислительная техника</u> код и наименование
Профиль: <u>Автоматизированные системы обработки информации и управления</u>
Дисциплина: <u>Б1.Д.Б.15 Физика</u>
Форма обучения: <u>очная</u>
(очная, очно-заочная)
Год набора <u>2025</u>
РЕКОМЕНДОВАНА на заседании кафедры <u>ООД и ІТ-технологий</u> наименование кафедры
протокол № <u>9</u> от « <u>10</u> » <u>апрель</u> 2025 г.
Ответственный исполнитель, и.о. зав. кафедрой <u>ООД и ІТ-технологий</u> <u>Д.К.Афанасова</u> подпись расшифровка подписи
Исполнители:
Старший преподаватель ООД и IT-технологий подпись м.И.Симонова расшифровка подпись
ОДОБРЕНА на заседании НМС, протокол № $\underline{6}$ от « $\underline{15}$ » мая 2025 г. Председатель НМС л.Ю. Полякова расшифровка подпись
СОГЛАСОВАНО: И.о. зав. кафедрой <u>ООД и ІТ-технологий</u> — Д.К.Афанасова подпись — расшифровка подписи
Заведующий библиотекой С.Н. Козак
подпидб расшифровка подписи