МИНОБРНАУКИ РОССИИ

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

Кафедра общеобразовательных дисциплин и ІТ-технологий

УТВЕРЖДАЮ
Замудиректора по УМиНР
Полякова Л.Ю.
Иодинсь, расшифровка подписи)
полякова Л.Ю.
мая 2025 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Б1.Д.Б.11.1 Линейная алгебра и математический анализ»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>09.03.01 Информатика и вычислительная техника</u>
(код и наименование направления подготовки)

<u>Автоматизированные системы обработки информации и управления</u> (наименование направленности (профиля) образовательной программы)

Квалификация <u>Бакалавр</u> Форма обучения *Очная*

Кумертау 2025

Рабочая программа дисциплины «Б1.Д.Б.11.1 Линейная алгебра и математический анализ» /сост. Афанасова Д.К.. - Кумертау: Кумертауский филиал ОГУ, 2025

Рабочая программа предназначена обучающимся очной формы по направлению подготовки 09.03.01 Информатика и вычислительная техника

[©] Афанасова Д.К., 2025

[©] Кумертауский филиал ОГУ, 2025

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины — овладение студентами математическим аппаратом для анализа, моделирования и решения прикладных задач в системе теплоснабжения.

Задачи:

- -изучить основные математические понятия необходимые для решения инженерных задач;
- овладеть основными приемами анализа и моделирования устройств, процессов и явлений при поиске оптимальных решений прикладных задач;
- -выработать у студентов умение самостоятельно расширять свои знания, проводить анализ прикладных инженерных задач.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: *Б1.Д.Б.13 Вычислительная математика, Б1.Д.В.1 Численные* методы в инженерных расчетах, *Б1.Д.В.5 Основы научных исследований, Б1.Д.В.Э.3.1 Обработка экспериментальных данных*

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций			
ОПК-1 Способен	ОПК-1-В-1 Знает основы	Знать:			
применять	математики, физики,	- математический аппарат			
естественнонаучные и	вычислительной техники и	аналитической геометрии, линейной			
общеинженерные	программирования	алгебры, дифференциального и			
знания, методы	ОПК-1-В-2 Умеет решать	интегрального исчисления функции			
математического	стандартные профессиональные	одной переменной, теории функции			
анализа и	задачи с применением	нескольких переменных, теории			
моделирования,	естественнонаучных и	функции комплексного переменного,			
теоретического и	общеинженерных знаний,	теории рядов, теории			
экспериментального	методов математического	дифференциальных уравнений			
исследования в	анализа и моделирования	Уметь:			
профессиональной	ОПК-1-В-3 Владеет навыками	-самостоятельно использовать			
деятельности	теоретического и	математический аппарат, методы			
	экспериментального	анализа и моделирования,			
	исследования объектов	теоретического и экспериментального			
	профессиональной деятельности	исследования при решении задач			
		Владеть:			
		- навыками применения			
		соответствующего физико-			
		математического аппарата при решении			
		задач			

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 6 зачетных единиц (216 академических часов).

Вид работы	Трудоемкость, академических часов				
1	1 семестр	2 семестр	всего		
Общая трудоёмкость	108	108	216		
Контактная работа:	50,25	51,25	101,5		
Лекции (Л)	34	34	68		
Практические занятия (ПЗ)	16	16	32		
Консультации		1	1		
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	0,5		
Самостоятельная работа:	57,75	56,75	114,5		
- проработка и повторение лекционного материала и	17,75	16,75	34,5		
материала учебников и учебных пособий;					
- подготовка к практическим занятиям;	10	10	25		
- изучение разделов курса в системе электронного	5	5	5		
обучения;	7	7	14		
- подготовка к рубежному контролю	18		18		
- подготовка к дифференцированному зачету		18	18		
- подготовка к экзамену					
Вид итогового контроля (зачет, экзамен,	зачет	экзамен			
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 1 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Элементы высшей алгебры	29	10	4		15
2	Аналитическая геометрия на плоскости и в	27	10	4		13
	пространстве					
3	Основы математического анализа	25	6	4		15
4	Дифференциальное исчисление	27	8	4		15
	Итого:	108	34	16		58

Разделы дисциплины, изучаемые в 2 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
5	Функция нескольких переменных	25	6	4		15
6	Интегральное исчисление	31	12	4		15
7	Дифференциальные уравнения	29	10	4		15
8	Ряды	23	6	4		13
	Итого:	108	34	16		58
	Bcero:		68	32		116

4.2 Содержание разделов дисциплины

Раздел 1. Элементы высшей алгебры

Матрицы: основные определения, классификация, операции над матрицами (сложение, вычитание, умножение), элементарные преобразования матриц, приведение к треугольному виду, транспонирование матриц; их свойства.

Определители: формулы для вычисления определителей 1,2,3 порядков. Простейшие свойства определителей. Дополнительный минор и алгебраические дополнения для элемента определителя, их свойства. Практические правила вычисления определителей n > 4.Определитель произведения матриц.

Системы m линейных уравнений с n неизвестными: основные определения, классификация, метод Гаусса решения системы m линейных уравнений с n неизвестными; правило Крамера решения системы m линейных уравнений с n неизвестными. Исследование систем линейных алгебраических уравнений. Свойства линейной зависимости.

Обратная матрица: определение, свойства, вывод формулы для вычисления. Применение обратных матриц для решения систем. Кольцо матриц, группа невырожденных матриц. Матричные уравнения.

Ранг матрицы, базисный минор. Различные теоремы о рангах. Подобные матрицы. Теорема Кронекера - Капелли о совместности неоднородной линейной системы.

Линейное пространство: определение, примеры линейных пространств. Понятие линейной зависимости независимости системы векторов, критерий линейной зависимости системы векторов в произвольном пространстве. Конечномерное линейное пространство: определение, базис, способ выбора базиса, координаты вектора. Критерий линейной независимости векторов в конечномерном пространстве. Матрица перехода от одного базиса к другому. Формулы для связи координат одного и того же вектора в двух базисах одного и того же линейного пространства.

Векторы в R^3 : основные определения (равенство, коллинеарность компланарность), линейные операции. Свойства множества векторов, плоскости (реального пространства), исходящих из одной точки: линейное пространство, базис, размерность.

Прямоугольная система координат в \mathbb{R}^3 , координаты вектора, действия над векторами, заданными в координатной форме. Скалярная проекция вектора на ось: определение, свойства, геометрический смысл координат.

Скалярное, векторное и смешанное произведения векторов: определения, свойства, формулы для вычисления, приложения.

Раздел 2. Аналитическая геометрия на плоскости и в пространстве

Плоскость и прямая в R³: различные способы задания, взаимное расположение.

Кривые второго порядка: окружность, эллипс, гипербола, парабола, их геометрические свойства и уравнения. Поверхности, основные свойства, классификация.

Расширение понятия числа. Комплексные числа: основные определения, алгебраическая, тригонометрическая, показательная формы записи, операции над комплексными числами, геометрическая интерпретация. Определение комплексных чисел, их изображение на плоскости. Модуль и аргумент комплексного числа. Алгебраическая, тригонометрическая, показательная формы комплексного числа. Формула Эйлера. Операции над комплексными числами. Формула Муавра. Корни из комплексных чисел.

Раздел 3. Основы математического анализа

Множества. Операции над множествами. Числовые множества. Окрестность точки. Множества точек на прямой, на плоскости, в пространстве. Ограниченные множества. Точная верхняя и точная нижняя граница. Замкнутые множества. Функции. Область определения. Множество значений функции. Сложные и обратные функции. График функции. Основные элементарные функции, их свойства и графики.

Числовая последовательность. Предел числовой последовательности. Существование предела монотонной ограниченной последовательности. Арифметические действия над пределами.

Предел функции в точке и на бесконечности. Односторонние пределы. Теорема о связи односторонних пределов с пределом функции. Ограниченные функции на множестве X и в окрестности точки x0.

Теорема об ограниченной функции, имеющей предел. Теорема о единственности предела функции. Теорема о промежуточной функции.

Бесконечно малые и бесконечно большие функции, их свойства, связь между ними. Виды неопределенностей. Теорема о сохранении знака предела функции. Теорема о переходе в неравенствах к пределу. Теорема о представлении функции. Первый и второй замечательные пределы.

Понятие о функции, непрерывной в точке. Арифметические действия над непрерывными функциями. Непрерывность сложной и обратной функций. Непрерывность элементарных функций. Свойства функций, непрерывных на отрезке. Точки разрыва и их классификация.

Раздел 4. Дифференциальное исчисление

Производная функции в точке. Её геометрический и механический смысл. Понятие дифференцируемости функции в точке. Связь между непрерывностью и дифференцируемостью.

Дифференциал функции и его геометрический смысл. Приближенные вычисления с помощью дифференциала. Правила нахождения производной и дифференциала. Производная тригонометрических, степенной и логарифмической функций.

Производная обратной функции. Формулы дифференцирования показательной функции и аркфункций.

Дифференцирование сложной функции. Логарифмическое дифференцирование. Дифференцирование функций, заданных параметрически.

Производные и дифференциалы высших порядков. Основные теоремы дифференциального исчисления: теоремы Ферма, Роля, Лагранжа, Коши. Правило Лопиталя.

Условия монотонности функции. Экстремумы функции. Необходимое и достаточное условия экстремума. Отыскание наибольшего и наименьшего значений функции, дифференцируемой на отрезке.

Исследование функции на выпуклость, вогнутость и точки перегиба.

Нахождение асимптот функции. Общая схема исследования функции и построение её графика.

Раздел 5. Функция нескольких переменных

Понятие функций многих переменных. Область их определения и множество значений. Геометрическое изображение. Предел и непрерывность функции двух переменных. Свойства функции, непрерывной в замкнутой, ограниченной области.

Частные производные. Понятие о дифференцируемости функции двух переменных. Условия дифференцируемости функции в точке. Дифференциал и его связь с частными производными. Геометрический смысл частных производных и дифференциала.

Производные сложных функций. Частные производные и дифференциалы высших порядков. Касательная плоскость и нормаль к поверхности.

Экстремум функции двух переменных. Необходимые и достаточные условия экстремума.

Раздел 6. Интегральное исчисление

Первообразная. Неопределенный интеграл и его свойства. Таблица основных интегралов.

Замена переменной и интегрирование по частям в неопределенном интеграле. Интегрирование рациональных функций.

Интегрирование иррациональных и тригонометрических функций.

Задача, приводящая к понятию определенного интеграла. Определенный интеграл как предел интегральных сумм. Существование и основные свойства определенного интеграла.

Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Методы интегрирования в определенном интеграле.

Геометрические и механические приложения определенного интеграла.

Несобственные интегралы первого и второго родов. Их вычисление и сходимость.

Задача, приводящая к понятию двойного интеграла. Определение и свойства двойного интеграла.

Вычисление двойного интеграла: Случай прямоугольной области, криволинейной области, в полярных координатах. Приложения двойного интеграла.

Тройной интеграл. Определение, свойства, вычисление в различных координатах, приложения.

Криволинейные интегралы первого и второго родов, определение, свойства, вычисление, приложения.

Связь между криволинейными интегралами первого и второго родов. Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования. Интегрирование полного дифференциала.

Повторные интегралы первого и второго родов, свойства, вычисление, приложения. Связь между ними. Формулы Остроградского и Стокса.

Раздел 7. Дифференциальные уравнения

Задача, приводящая к понятию дифференциального уравнения. Основные понятия теории дифференциальных уравнений. Дифференциальные уравнения первого порядка. Задача Коши и теорема о существовании и единственности решения задачи Коши для дифференциального уравнения первого порядка. Общее и частное решения дифференциального уравнения первого порядка. Дифференциальные уравнения с разделяющимися и разделенными переменными.

Однородные уравнения. Линейные уравнения. Уравнения в полных дифференциалах.

Дифференциальные уравнения высших порядков. Задача Коши и теорема о существовании и единственности решения задачи Коши для дифференциального уравнения п-ого порядка. Общее и частное решения. Дифференциальные уравнения, допускающие понижение порядка.

Линейные дифференциальные уравнения: однородные и неоднородные. Линейные однородные дифференциальные уравнения, их свойства. Линейная зависимость и независимость функций на отрезке. Вронскиан. Теоремы о Вронскиане.

Фундаментальная система решений. Теорема о структуре общего решения линейного однородного дифференциального уравнения. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

Теорема о структуре общего решения линейного неоднородного дифференциального уравнения. Метод Лагранжа вариации постоянных. Решение линейного неоднородного дифференциального уравнения со специальной правой частью.

Раздел 8. Ряды

Числовые ряды. Сходимость и сумма ряда. Свойства сходящихся рядов. Необходимое условие сходимости ряда. Ряды с положительными членами. Теоремы сравнения. Признаки сходимости Даламбера и Коши. Интегральный признак.

Знакочередующиеся ряды. Теорема Лейбница. Знакопеременные ряды. Абсолютно и условно сходящиеся ряды. Переместительное свойство сходящихся рядов.

Функциональные ряды. Область сходимости. Степенные ряды. Теорема Абеля. Интервал сходимости. Интегрирование и дифференцирование степенных рядов.

Разложение функций в степенные ряды. Теорема о единственности разложения функции в степенной ряд. Ряды Тейлора и Маклорена.

Тригонометрический ряд. Ряд Фурье. Разложение периодической функции в ряд Фурье.

Ряд Фурье для четных и нечетных функций, заданных на интервале длиной 2π . Ряд Фурье для функции с периодом 2l. Разложение в ряд Фурье непериодической функции.

4.3 Практические занятия (семинары)

№ занятия	№	Тема	Кол-во
л запятия	раздела	1 CMa	часов
1	1	Матрицы. Определители. Ранг матрицы Решение систем	2
	1	линейных уравнений различными способами	
2	1	Векторы. Линейные и линейные операции над векторами.	2
	1	Скалярное, векторное и смешанное произведения векторов	
3	2	Прямая на плоскости, прямая и плоскость в пространстве:	2
	2	ключевые задачи	
4	2	Кривые и поверхности второго порядка. Приведение уравнений	2
		к каноническому виду. Комплексные числа.	
5	3	Предел последовательности и функции	2

№ занятия	№ раздела	Тема	
6	3	Непрерывность функций. Точки разрыва и их классификация	2
7	4	Исследование функций и построение графиков	2
8	4	Исследование функций и построение графиков	2
9	5	Функции многих переменных, область определения, предел, непрерывность. Частные производные.	2
10	5	Функции многих переменных. Экстремум функции многих переменных интеграла	2
11	6	Неопределенный интеграл.	2
12	6	Определенный интеграл. Несобственные интегралы. Двойной интеграл.	2
13	7	Дифференциальные уравнения 1 порядка	2
14	7	Дифференциальные уравнения 2 порядка	2
15	8	Числовые ряды	2
16	8	Степенные ряды	2
		Итого:	32

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Ильин, В. А. Математический анализ в 2 ч. Часть 1 в 2 кн. Книга 1 : учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 324 с. (Высшее образование). ISBN 978-5-534-07067-5. Режим доступа: https://urait.ru/bcode/513351.
- 2. Ильин, В. А. Математический анализ в 2 ч. Часть 1 в 2 кн. Книга 2 : учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 315 с. (Высшее образование). ISBN 978-5-534-07069-9. Режим доступа: https://urait.ru/bcode/513352
- 3. Никонова, Н. В. Краткий курс алгебры и геометрии. Примеры, задачи, тесты : учеб. пособие / Н. В. Никонова, Н. Н. Газизова, Г. А. Никонова. Казань : Казанский национальный исследовательский технологический университет, 2014. 100 с. Режим доступа : https://biblioclub.ru/index.php?page=book&id=428767.
- 4. Потапов, А. П. Линейная алгебра и аналитическая геометрия : учебник и практикум для вузов / А. П. Потапов. Москва : Издательство Юрайт, 2023. 309 с. Режим доступа : https://urait.ru/bcode/511926.

5.2 Дополнительная литература

- 1. Кремер, Н. Ш. Математический анализ : учебник и практикум / Н. Ш. Кремер, Б. А. Путко, И. М. Тришин; [под ред. Н. Ш. Кремера]. Москва : Юрайт, 2014. 620 с.. (Бакалавр. Углубленный курс).
- 2. Кудрявцев, Л. Д. Краткий курс математического анализа: учебник: в 2 т. / Л. Д. Кудрявцев. 3-е изд., перераб. Москва: Физматлит, 2013. 400 с. Т. 1: Дифференциальное и интегральное исчисления функций одной переменной. Ряды.
- 3. Кудрявцев, Л. Д. Краткий курс математического анализа: учебник: в 2 т. / Л. Д. Кудрявцев. 3-е изд., перераб. Москва: Физматлит, 2003. Т. 2: Дифференциальное и интегральное исчисления функций многих переменных. Гармонический анализ. , 2013. 424 с. .
- 4. Пахомова, Е. Г. Линейная алгебра и аналитическая геометрия. Сборник заданий : учеб. пособие для вузов / Е. Г. Пахомова, С. В. Рожкова. Москва : Издательство Юрайт, 2024. 110 с. Режим доступа : https://urait.ru/bcode/451426.

5.3 Интернет-ресурсы

- 1. http://www.mccme.ru/ URL: Московский центр непрерывного математического образования
- 2. http://vilenin.narod.ru/Mm/Books/Books.htm Математическая библиотека
- 3. http://en.edu.ru/ Естественно-научный образовательный портал
- 4. Вестник Московского Университета. Серия 1. Математика. Механика: журнал. М.: Агенство «Роспечать» периодическое научное издание отражает тематику важнейших направлений теоретических исследований по математике и механике. http:// vestnik.math.msu.su>start-in-fr.html
- 5. Алгебра и анализ: журнал.- Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН http://www.pdmi.ras.ru/AA
- 6. Дифференциальные уравнения: журнал. М.: МАИК "Наука /Интерпериодика".- http://nasb.gov.by/eng/publications/difur/index.php

5.4 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система РЕД ОС
- 2. Пакет офисных приложений LibreOffice (Writer, Calc, Impress, Math, Draw, Base)
- 3. САПР Компас-3D
- 4. 7zip архиватор: P7Zip
- 5. Веб-браузер с поддержкой ГОСТовского шифрования для работы с ГИС (госИС): Chromium
- 6. Программа для создания и обработки растровой графики с частичной поддержкой работы с векторной графикой: GIMP Простой редактор файлов PDF: PDFedit
 - 7. http://newgdz.com/spravochnik Справочник по высшей математике
 - 8. http://aist.osu.ru/ AИССТ ОГУ автоматизированная

6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в учебных аудиториях.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду филиала и ОГУ.

ЛИСТ согласования рабочей программы

Направление подготовки: <u>09.03.01 Информатика и вычислительная техника</u> код и наименование	
Профиль: <u>Автоматизированные системы обработки информации и управления</u>	
Дисциплина: <u>Б1.Д.Б.11.1 Линейная алгебра и математический анализ</u>	
Форма обучения: <u>очная</u> (очная, очно-заочная)	
Год набора <u>2025</u>	
РЕКОМЕНДОВАНА на заседании кафедры <u>ООД и IT-технологий</u> наименование кафедры	
протокол № <u>9</u> от « <u>10</u> » <u>апрель</u> 2025 г.	
	<u>I.К.Афанасова</u> асшифровка подписи
Исполнители: Доцент кафедры ООД и IT-технологий должность подпись ра	<u>Д.К.Афанасова</u> асшифровка подписи
ОДОБРЕНА на заседании НМС, протокол № <u>6</u> от « <u>15</u> » <u>мая</u> 2025 г.	T. 10 T
	П.Ю. Полякова сшифровка подписи
СОГЛАСОВАНО:	
	<u> І.К.Афанасова</u>
подпись До рас	сшифровка подписи
Ваведующий библиотекой	С.Н. Козак