МИНОБРНАУКИ РОССИИ

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

УТВЕРЖДАЮ:
Зам. директора по УМиНР
Л.Ю. Полякова
2025 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ И ЭЛЕКТРОННОЙ ТЕХНИКИ

Специальность 09.02.08 Интеллектуальные интегрированные системы

Фонд оценочных средств по учебной дисциплине «Основы электротехники и электронной техники» разработан на основе рабочей программы учебной дисциплины «Основы электротехники и электронной техники» по специальности 09.02.08 Интеллектуальные интегрированные системы.

Организация-разработчик: <u>Кумертауский филиал ФГБОУ ВО</u> «Оренбургский государственный университет»

Разработчик: Р.Р. Шагманов, преподаватель

Рассмотрено и одобрено на заседании ПЦК «Общепрофессиональных дисциплин»

Протокол N_2 / от « O_5 » / O_6 20/3 Γ .

Председатель ПЦК

И.С. Тараскина

ПАСПОРТ

фонда оценочных средств учебной дисциплины Основы электротехники и электронной техники

В результате освоения учебной дисциплины обучающийся должен уметь:

- применять основные определения и законы теории электрических цепей;
- учитывать на практике свойства цепей с распределенными параметрами и нелинейных электрических цепей;
 - различать непрерывные и дискретные сигналы и их параметры;
- различать полупроводниковые диоды, биполярные и полевые транзисторы, тиристоры на схемах и в изделиях;
- определять назначение и свойства основных функциональных узлов аналоговой электроники: усилителей, генераторов в схемах;
 - использовать операционные усилители для построения различных схем;
- применять логические элементы, для построения логических схем, грамотно выбирать их параметры и схемы включения

В результате освоения учебной дисциплины обучающийся должен знать:

- основные характеристики, параметры и элементы электрических цепей при гармоническом воздействии в установившемся режиме;
- свойства основных электрических RC и RLC цепочек, цепей с взаимной индукцией;
 - трехфазные электрические цепи;
 - основные свойства фильтров;
 - непрерывные и дискретные сигналы;
 - методы расчета электрических цепей;
 - спектр дискретного сигнала и его анализ;
 - цифровые фильтры;
- особенности построения диодно-резистивных, диодно-транзисторных и транзисторно-транзисторных схем реализации булевых функций;
- цифровые интегральные схемы: режимы работы, параметры и характеристики, особенности применения при разработке цифровых устройств

Содержание дисциплины должно быть ориентировано на подготовку студентов к освоению профессиональных модулей, овладению общими компетенциями:

- OК 01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02 Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности
- ОК 03 Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях

ОК 04 Эффективно взаимодействовать и работать в коллективе и команде

ОК 05 Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста

OК 09 Пользоваться профессиональной документацией на государственном и иностранном языках

Перечень оценочных средств по разделам (темам) учебной дисциплины

№	Разделы (темы) дисциплины	Наименование
п/п		оценочного
		средства
1	Раздел I. Электротехника	
3	Тема 1.2. Основные понятия электрических цепей	устный опрос
4	Тема 1.3. Расчёт электрических цепей постоянного тока	устный опрос
		тестирование
5	Тема 1.4 Электротехнические измерения	
		устный опрос
6	Тема 1.5 Однофазные электрические цепи	устный опрос
7	Тема 1.6 Трёхфазные электрические цепи	устный опрос
8	Тема 1.7. Электротехнические устройства	
		устный опрос
9	Тема 1.8. Источники питания	устный опрос
10	Раздел II. ЭЛЕКТРОННАЯ ТЕХНИКА	
11	Тема 2.1. Физические основы полупроводников	устный опрос
12	Тема 2.2. Полупроводниковые диоды	устный опрос
		тестирование
13	Тема 2.3. Транзисторы	
		устный опрос
14	Тема 2.4 Цифровые интегральные схемы	
15	Тема 2.5. Виды стабилизаторов	устный опрос
16	Тема 2.6. Импульсная техника	устный опрос

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА

ТЕМА 1.2. ОСНОВНЫЕ ПОНЯТИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

- 1. Сформулируйте закон Кулона.
- 2. Сформулируйте закон сохранения заряда.
- 3. Что такое напряженность электрического поля?
- 4. Что такое разность потенциалов? В каких единицах она измеряется?
- 5. В каких единицах измеряется емкость?
- 6. По какой формуле вычисляется емкость плоского конденсатора?
- 7. Как вычислить общую емкость конденсаторов при параллельном соединении?
- 8. Как вычислить общую емкость конденсаторов при последовательном соединении?
 - 9. Что такое сила и плотность тока? В каких единицах они измеряются?
 - 10. В каких единицах измеряется сопротивление?
 - 11. От чего зависит сопротивление проводника?
 - 12. Что такое удельное сопротивление?
 - 13. Что такое проводимость и удельная проводимость?
- 14. Какой формулой описывается зависимость сопротивления проводников от температуры?
- 15. Чему равно общее сопротивление последовательно соединенных проводников
- 16. Чему равно общее сопротивление параллельно соединенных проводников?
 - 17. Как распределяются токи в параллельно соединенных проводниках?
- 18. Запишите формулы для вычисления работы и мощности электрического тока.
 - 19. Сформулируйте закон Джоуля Ленца.
 - 20. Что такое ЭДС источника тока?
 - 21. Сформулируйте закон Ома для замкнутой цепи.
 - 22. Сформулируйте первое правило Кирхгофа.
 - 23. Сформулируйте второе правило Кирхгофа.
 - 24. Сформулируйте правило знаков при использовании правил Кирхгофа.
 - 25. Что такое шунтирование?
- 26. Чему равен ЭДС и внутреннее сопротивление батареи при последовательном соединении источников тока?
- 27. Чему равны ЭДС и внутреннее сопротивление батареи при параллельном соединении источников тока?

ТЕМА 1.3. РАСЧЁТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

- 1. Что такое мгновенное значение ЭДС, тока и напряжения?
- 2. Что называется фазой?
- 3. Что называется амплитудой?
- 4. Что такое частота?
- 5. Какова связь между периодом и частотой?
- 6. Дайте определение действующего значения тока и напряжения.
- 7. Какое сопротивление называется активным, а какое реактивным?
- 8. Отчего зависит емкостное сопротивление?
- 9. В какой цепи наблюдается резонанс напряжений? Запишите условие резонанса.
- 10. В какой цепи наблюдается резонанс токов? Запишите условие резонанса.
 - 11. Дайте определения полной, активной и реактивной мощностей.
 - 12. Что такое коэффициент мощности?
 - 13. Как на практике увеличить коэффициент мощности?
 - 14. Как взаимодействуют полюсы магнитов?
 - 15. Какой величиной характеризуется магнитное поле?
 - 16. Сформулируйте правило буравчика.
 - 17. Запишите закон Ампера.
 - 18. Сформулируйте правило левой руки.
 - 19. Что такое сила Лоренца? Чему она равна?
- 20. Какие материалы называются диамагнетиками? Парамагнетиками? Ферромагнетиками?
 - 21. Какова природа диамагнетизма и парамагнетизма?
 - 22. Что такое магнитная проницаемость?
 - 23. Что такое остаточная намагниченность?
 - 24. Что такое коэрцитивная сила?
 - 25. Изобразите петлю гистерезиса.
- 26. Чему равен магнитный поток через контур? В каких единицах он измеряется?
 - 27. Запишите закон электромагнитной индукции.
 - 28. Сформулируйте правило Ленца.
 - 29. В чем состоит явление самоиндукции?
 - 30. По какой формуле можно вычислить ЭДС самоиндукции?
 - 31. В каких единицах измеряется индуктивность?
- 32. С помощью какой формулы можно вычислить индуктивность соленоида?

Тесты к теме 1.3. Расчёт электрических цепей постоянного тока

- 1. Что такое электрический ток?
 - А. графическое изображение элементов.
 - В. это устройство для измерения ЭДС.
 - С. упорядоченное движение заряженных частиц в проводнике.
 - D. беспорядочное движение частиц вещества.
- Е. совокупность устройств предназначенных для использования электрического сопротивления.
- 2. Устройство, состоящее из двух проводников любой формы, разделенных диэлектриком
 - А. электреты
 - В. источник
 - С. резисторы
 - D. реостаты
 - Е. Конденсатор
- 3. Закон Джоуля Ленца
- А. работа производимая источникам, равна произведению ЭДС источника на заряд, переносимый в цепи.
- В. определяет зависимость между ЭДС источника питания, с внутренним сопротивлением.
- С. пропорционален сопротивлению проводника в контуре алгебраической суммы.
- D. количество теплоты, выделяющейся в проводнике при прохождении по нему электрического тока, равно произведению квадрата силы тока на сопротивление проводника и время прохождения тока через проводник.
- Е. прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.
- 4. Прибор
 - А. резистор
 - В. конденсатор
 - С. реостат
 - D. потенциометр
 - Е. амперметр
- 5. Определите сопротивление нити электрической лампы мощностью 100 Вт, если лампа рассчитана на напряжение 220 В.
 - А. 570 Ом.
 - В. 488 Ом.
 - С. 523 Ом.
 - D. 446 Ом.
 - Е. 625 Ом.
- 6. Физическая величина, характеризующую быстроту совершения работы.
 - А. работа
 - В. напряжения
 - С. мошность

- D. сопротивления
- Е. нет правильного ответа.
- 7. Сила тока в электрической цепи 2 А при напряжении на его концах 5 В. Найдите сопротивление проводника.
 - А. 10 Ом
 - В. 0,4 Ом
 - С. 2,5 Ом
 - D. 4 Ом
 - Е. 0,2 Ом
- 8. Закон Ома для полной цепи:
 - A. I = U/R
 - B. U=U*I
 - C. U=A/q
 - D. I = = = ... =
 - E. I=E/(R+r)
- 9. Диэлектрики, длительное время сохраняющие поляризацию после устранения внешнего электрического поля.
 - А. сегнетоэлектрики
 - В. электреты
 - С. потенциал
 - D. пьезоэлектрический эффект
 - Е. электрический емкость
 - 10. Вещества, почти не проводящие электрический ток.
 - А. диэлектрики
 - В. электреты
 - С. сегнетоэлектрики
 - D. пьезоэлектрический эффект
 - Е. диод
- 11. Какие из перечисленных ниже частиц имеют наименьший отрицательный заряд?
 - А. электрон
 - В. протон
 - С. нейтрон
 - D. антиэлектрон
 - Е. нейтральный
- 12. Участок цепи это...?
 - А. часть цепи между двумя узлами;
 - В. замкнутая часть цепи;
 - С. графическое изображение элементов;
 - D. часть цепи между двумя точками;
- Е. элемент электрической цепи, предназначенный для использование электрического сопротивления.

ТЕМА 1.4 ЭЛЕКТРОТЕХНИЧЕСКИЕ ИЗМЕРЕНИЯ

Перечень вопросов к устному опросу:

- 1.В чем отличие прямого и косвенного методов измерения тока?
- 2.Почему при использовании приборов магнитоэлектрического типа следует соблюдать правильную полярность их подключения?
- 3.В чем заключается преимущество применения амперметра на основе датчика Холла? Возможно ли его применение для измерения переменного тока в цепи?
- 4.В каких случаях для измерения напряжения используют электростатический стрелочный вольтметр?
- 5.В чем проявляется воздействие на участок цепи подключенуого к нему стрелочного вольтметра магнитоэлектрического типа?
- 6. Каковы принципиальные особенности использования цифровых амперметров и вольтметров?
- 7.Почему для измерения мощности широко применяют электродинамические стрелочные приборы, а не комбинацию двух приборов вольтметра и амперметра?
- 8.В каких случаях используют омметры с последовательным включением измеряемого сопротивления, а в каких с параллельным включением?
 - 9.Перечислите основные параметры гармонического сигнала.
 - 10. Перечислите основные параметры импульсного сигнала.
- 11. Почему для измерения действующего значения тока с помощью электродинамического прибора используют разные схемы его включения?
- 12.В каких случаях применяют токоизмерительные клещи? Можно ли с их помощью выполнить высокоточные измерения?
- 13.В чем состоит преимущество применения фазометра для измерения разности фаз, а в чем преимущество осциллографического метода измерений?

ТЕМА 1.5 ОДНОФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ.

- 1. Электрическая цепь. Линейные и нелинейные элементы электрической цепи.
 - 2. Основные понятия переменного тока.
 - 3. Активное и реактивное сопротивления.
 - 4. Цепь с активным сопротивлением.
 - 5. Цепь с емкостью.
 - 6. Цепь с индуктивностью.
- 7. Цепь при последовательном соединении активного и индуктивного сопротивления.
- 8. Цепь при параллельном соединении активного, индуктивного и емкостного сопротивлений.
 - 9. Разветвленные цепи переменного тока.

ТЕМА 1.6 ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ.

Перечень вопросов к устному опросу:

- 1. Какое соединение называется звездой?
- 2. Как строится векторная диаграмма для токов и напряжений при соединении звездой.
 - 3. Какое соединение называется треугольником?
- 4. Как строится векторная диаграмма для токов и напряжений при соединении треугольником?
 - 5. В каком случае отсутствует ток в нулевом проводе?
- 6. Какова связь между линейными и фазными напряжениями при соединении звездой?
- 7. Какова связь между линейными и фазными токами при соединении треугольником?
- 8. Какие способы измерения мощности трехфазной системы вы знаете? В каких случаях применяется каждый из них?

ТЕМА 1.7 ЭЛЕКТРОТЕХНИЧЕСКИЕ УСТРОЙСТВА.

- 1. Что называется коэффициентом трансформации?
- 2. Какие методы измерения КПД трансформатора вы знаете?
- 3. Как соединяются между собой обмотки трехфазных трансформаторов?
 - 4. Как включают трансформатор тока и в каком режиме он работает?
- 5. Как включают трансформатор напряжения и в каком режиме он работает
- 6. Как устроен трехфазный асинхронный двигатель с короткозамкнутым ротором
- 7. Каков принцип работы трехфазного асинхронного двигателя с короткозамкнутым ротором?
- 8. Объясните создание вращающегося магнитного поля трехфазной обмоткой машины переменного тока?
- 9. Отчего зависит скорость вращения n вращающегося магнитного поля?
 - 10. Что такое скольжение асинхронного двигателя?
 - 11. Как производится реверсирование асинхронного двигателя?
 - 12. Как устроен трехфазный асинхронный двигатель с фазным ротором?
- 13. Как производится пуск трехфазных асинхронных двигателей с фазным и короткозамкнутым ротором ?
 - 14. Как устроен однофазный асинхронный двигатель?
 - 15. Каков принцип работы однофазного асинхронного двигателя?
 - 16. Опишите способы пуска однофазных асинхронных двигателей?
- 17. Нарисуйте схемы включения трехфазного асинхронного двигателя в однофазную сеть?
 - 18. Как устроен трехфазный синхронный генератор?
 - 19. Каков принцип работы трехфазного синхронного генератора?

- 20. Какие конструкции роторов используются в трехфазных синхронных генераторах?
- 21. Как осуществляется самовозбуждение трехфазного синхронного генератора?
- 22. Как зависит напряжение на зажимах синхронного генератора от нагрузки?
 - 23. Что такое реакция якоря?
- 24. Перечислите и изобразите характеристики трехфазного синхронного генератора?
 - 25. Опишите работу синхронной машины в режиме двигателя?
- 26. Как осуществляется асинхронный пуск и остановка синхронного двигателя?
- 27. Перечислите и изобразите характеристики трехфазного синхронного двигателя?
 - 28. Изложите принцип работы генератора постоянного тока?
 - 29. Опишите устройство промышленного генератора постоянного тока?
- 30. Отчего зависит ЭДС и вращающий момент генератора постоянного тока?
- 31. Перечислите способы возбуждения генераторов постоянного тока и нарисуйте соот- ветствующие схемы их включения?
 - 32. Что такое обратимость машин постоянного тока?
 - 33. Опишите принцип работы и устройство двигателя постоянного тока?
- 34. Что нужно сделать для того, чтобы поменять направление вращения двигателя постоянного тока?
- 35. Отчего зависит скорость вращения двигателя постоянного тока и как ее можно регулировать?
- 36. Перечислите способы возбуждения двигателей постоянного тока и нарисуйте соответствующие схемы их включения?

ТЕМА 1.8 ИСТОЧНИКИ ПИТАНИЯ

- 1. Каково назначение источников питания?
- 2. Каким образом классифицируются источники питания?
- 3. Каков функциональный состав источников питания?
- 4. Перечислите типы схем выпрямителей.
- 5. Для чего применяются стабилизаторы напряжения и как они классифицируются?
- 6. Каков алгоритм работы источников питания непрерывного типа и импульсных источников питания?
- 7. Приведите структуру построения источника питания и охарактеризуйте его функциональный состав.
 - 8. Каковы основные параметры источников питания?
- 9. Каковы недостатки и достоинства источников питания непрерывного типа и импульсных источников питания?

ТЕМА 2.1 ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Перечень вопросов к устному опросу:

- 1. Указать энергетические зоны различных материалов и в чем их отличие.
 - 2. Указать условие нейтральности.
 - 3. Что такое собственная концентрация, от чего и как зависит?
 - 4. Примесная проводимость и зависимость ее от температуры.
 - .5 Как зависит подвижность носителей от температуры?
 - 6. Понятие эффекта поля и его значимость.
 - 7. Чем определяется собственная проводимость ПП и от чего она зависит.
 - 8. Для чего вводят в собственный полупроводник примесь?
 - 9. Что такое основные и неосновные носители зарядов?

ТЕМА 2.2 ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

- 1. Нарисуйте схематическое обозначение диода и обозначьте выводы.
- 2. Способы включения диодов в электрические цепи.
- 3. Нарисуйте схематическое обозначение транзисторов прямой и обратной проводимости.
 - 4. Способы включения транзисторов в электрические цепи.
 - 5. Для чего используются транзисторы?
 - 6. Опишите, как происходит управление током в транзисторах?
 - 7. Как правильно подать напряжение смещения на транзисторы?
 - 8. Для чего используются диоды?
 - 9. Опишите структуру тиристоров и симисторов .
 - 10. Для чего используются тиристоры и симисторы?
 - 11. Каковы особенности работы стабилитрона?
 - 12. Как стабилитрон включается в цепь?
- 13. Нарисуйте схему регулирующей цепи со стабилитроном и опишите его работу.
 - 14. Как устроен и работает фоторезистор?
 - 15. Как устроен и работает солнечный элемент?
 - 16. Как устроен и работает фотодиод?
 - 17. Как устроен и работает фототранзистор?
- 18. Нарисуйте схематические обозначения фоторезистора, фотодиода, фототранзистора и солнечного элемента.
 - 19. Чем светодиод отличается от диода?
 - 20. Нарисуйте схематическое обозначение светодиода.
 - 21. Что такое интегральная микросхема?

Тесты к теме 2.2 «Полупроводниковые диоды»

- 1. Полупроводник-это вещество, проводимость которого сильно зависит от:
- 1) материала полупроводника
- 2) воздействия внешних факторов
- 3) строения кристаллической решетки
- 4) области применения
- 5) объема вещества
- 2. При добавлении какой примеси кристалл полупроводника приобретает электронную проводимость:
- 1) акцепторной
- 2) донорной
- 3) электронной
- 4) инжекторной
- 5) дырочной
- 3. Добавление акцепторных примесей в полупроводник позволяет:
- 1) Повысить количество свободных дырок;
- 2) Понизить количество свободных дырок;
- 3) Повысить количество свободных электронов;
- 4) Понизить количество свободных электронов;
- 5) Добавление акцепторных примесей не влияет на образование носителей заряда;
- 4. Добавление донорных примесей в полупроводник позволяет:
- 1) Повысить количество свободных дырок;
- 2) Понизить количество свободных дырок;
- 3) Повысить количество свободных электронов;
- 4) Понизить количество свободных электронов;
- 5) Добавление донорных примесей не влияет на образование носителей заряда;
- 5. Добавление примеси в полупроводник:
- 1) Увеличивает его проводимость;
- 2) Уменьшает его проводимость;
- 3) Увеличивает его сопротивление;
- 4) Почти не изменяет его проводимость;
- 5) Не изменяет его проводимость;
- 6. Какие носители являются основными в полупроводнике n-типа?
- 1) Электроны
- 2) Положительные ионы
- 3) Отрицательные ионы
- 4) Дырки
- 5) Позитроны
- 7. В полупроводнике р-типа какие носители заряда являются основными?
- 1) Отрицательные ионы
- 2) Положительные ионы
- 3) Электроны
- 4) Дырки
- 5) Позитроны

- 8. При добавлении какой примеси кристалл полупроводника приобретает дырочную проводимость:
- 1) акцепторной
- 2) донорной
- 3) электронной
- 4) инжекторной
- 5) дырочной
- 9 рп-переход
- 1) препятствует прохождению тока
- 2) способствует прохождению тока
- 3) не реагирует на прохождение тока
- 4) изменяет направление тока
- 5) изменяет полярность тока
- 10. При прямом включении диод:
- 1) изменяет его полярность
- 2) изменяет его направление
- 3) регулирует ток
- 4) не пропускает ток
- 5) пропускает ток

ТЕМА 2.3 ТРАНЗИСТОРЫ

- 1. Что такое транзистор?
- 2. Что представляет собой биполярный транзистор?
- 3. Привести физическую модель биполярного транзистора и по ней пояснить его работу в активном режиме.
 - 4. Привести основные схемы включения транзистора
- 5. Почему наибольшее применение имеет схема включения с общим эмиттером?
 - 6. Достоинства и недостатки схемы с общей базой?
 - 7. Почему схема с ОК называют эмиттерным повторителем?
 - 8. Какие режимы работы транзистора вам известны?
- 9. Привести входную и выходную ВАХ транзистора, включенного по схеме с ОЭ.
 - 10. Как связаны между собой и В

ТЕМА 2.4 ЦИФРОВЫЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ

Перечень вопросов к устному опросу:

- 1. Дайте пример простой программируемой функции.
- 2. Опишите метод плавких перемычек.
- 3. Опишите метод наращиваемых перемычек.
- 4. Принцип программирования устройств фотошаблоном.
- 5. Опишите ячейку памяти на основе СППЗУ-транзистора.
- 6. Нарисуйте примеры незапрограммированной и запрограммированной схем ППЗУ.
- 7. Нарисуйте примеры незапрограммированной и запрограммированной схем ПЛМ.
 - 8. Чем отличаются элементы ТТЛ с простым и сложным инвертором?
 - 9. Что такое КМОП?
 - 10. Что такое ЭСЛ?
 - 11. Чем отличается ЭСЛ от КМОП?
 - 12. Какова величина напряжения питания для ТТЛ, ТТЛШ микросхем?
 - 13. Как реализовать простейший триггер на элементах И-НЕ, ИЛИ-НЕ?
 - 14. В чем отличие асинхронных триггеров от синхронных?

ТЕМА 2.5 ВИДЫ СТАБИЛИЗАТОРОВ

Перечень вопросов к устному опросу:

- 1. Основной принцип действия стабилизаторов и их применение.
- 2. Положение рабочего участка стабилитрона.
- 3. Однокаскадный стабилизатор напряжения.
- 4. Смысл термокомпенсации.
- 5. Сравнение различных схем стабилизации напряжения.

ТЕМА 2.6 ИМПУЛЬСНАЯ ТЕХНИКА

- 1. Что такое импульсная техника, какие классы устройств она включает в себя?
 - 2. Что такое импульс и как его можно наблюдать?
- 3. Какие виды импульсов вы знаете и какими параметрами они характеризуются?
- 4. Что такое видео- и радиоимпульсы? Какими характеристиками они обладают?
 - 5. Каким образом можно описать импульсы аналитически и графически?
 - 6. Объясните, что такое ряд Фурье и интеграл Фурье.
- 7. Зачем нужно преобразование из временной области в спектральную и наоборот?
 - 8. Какие параметры характеризуют последовательность импульсов?
 - 9. Дайте определения понятиям «скважность» и «меандр».

- 10. Что такое модуляция и какие виды модуляции вы знаете?
- 11. Какие параметры характеризуют одиночный импульс?
- 12. В чем преимущества импульсной передачи информации?
- 13. Что такое АИМ, ШИМ и ЧИМ?
- 14. Что такое И КМ и в чем ее преимущества?
- 15. Какие области применения импульсной техники вы знаете?
- 16. Как изменялась элементная база импульсной техники и на каких устройствах основана современная импульсная техника?

оценка учебной деятельности студента

Критерии оценки устных ответов

Оценка	Уровень подготовки
«Отлично»	Выставляется обучающемуся, который:
	– полно раскрыл содержание материала в объеме,
	предусмотренном программой и учебником;
	– изложил материал грамотным языком, точно используя
	терминологию и символику, в определенной логической
	последовательности;
	– правильно выполнил рисунки, чертежи, графики,
	сопутствующие ответу;
	 показал умение иллюстрировать теорию конкретными
	примерами, применять ее в новой ситуации при выполнении
	практического задания;
	 продемонстрировал знание теории ранее изученных
	сопутствующих тем, сформированность и устойчивость
	используемых при ответе умений и навыков;
	– отвечал самостоятельно, без наводящих вопросов
	преподавателя; возможны одна-две неточности при
	освещение второстепенных вопросов или в выкладках,
	которые обучающийся легко исправил после замечания
	преподавателя.
«Хорошо»	Выставляется обучающемуся, если:
	– его ответ удовлетворяет в основном требованиям на оценку
	«отлично», но при этом имеет некоторые из недостатков: в
	изложении допущены небольшие пробелы, не исказившее
	содержание ответа;
	– допущены 1-2 недочета при освещении основного
	содержания ответа, исправленные после замечания
	преподавателя;
	– допущены ошибка или более 2 недочетов при освещении
	второстепенных вопросов или в выкладках, легко
	исправленные после замечания преподавателя.
«Удовлетворительно»	Выставляется обучающемуся, который:
-	- неполно излагает содержание материала (содержание
	изложено фрагментарно, не всегда последовательно), но
	показывает общее понимание вопроса и демонстрирует
	умения, достаточные для усвоения программного материала;
	- имелись затруднения или допущены ошибки в определении
	терминологии, чертежах, выкладках, исправленные после
	нескольких наводящих вопросов преподавателя;
	 не справляется с применением теории в новой ситуации при
	выполнении практического задания, но выполняет задания
	обязательного уровня сложности по данной теме.
"Цаунарнатраритан на»	Выставляется обучающемуся, который:
«Неудовлетворительно»	
	– не раскрывает основное содержание учебного материала;
	– обнаружено незнание обучающимся большей или наиболее
	важной части учебного материала;
	– допущены ошибки в определении понятий, при
	использовании терминологии, в рисунках, чертежах или
	графиках, в выкладках, которые не исправлены после
	нескольких наводящих вопросов преподавателя.

Критерии оценки письменных работ

Оценка	Уровень подготовки		
«Отлично»	Выставляется обучающемуся, если:		
	 работа выполнена полностью; 		
	- в обосновании решения и логических рассуждениях нет пробелов		
	и ошибок;		
	- в решении нет ошибок (возможны некоторые неточности, описки,		
	которые не являются следствием незнания или непонимания		
	учебного материала).		
«Хорошо»	Выставляется обучающемуся, если:		
	– работа выполнена полностью, но обоснования шагов решения		
	недостаточны (если умение обосновывать рассуждения не являлось		
	специальным объектом проверки);		
	– допущены 1 ошибка, или есть 2–3 недочёта в выкладках, рисунках,		
	чертежах или графиках (если эти виды работ не являлись		
	специальным объектом проверки).		
«Удовлетворительно»	Выставляется обучающемуся, если:		
	– допущено не более двух ошибок или более двух-трех недочетов в		
	выкладках, чертежах или графиках, но обучающийся обладает		
	обязательными умениями по проверяемой теме.		
«Неудовлетворительно»	Выставляется обучающемуся, если:		
	– допущены существенные ошибки, показавшие, что обучающийся		
	не обладает обязательными умениями по данной теме в полной		
	мере.		

Преподаватель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

Критерии оценки тестовых заданий

Процент результативности	Оценка уг	оовня подготовки
(правильных ответов)	Балл	Вербальный аналог
При наличии 20 вопросов в тесте:		•
18 ÷ 20	5	отлично
15 ÷ 17	4	хорошо
12 ÷ 14	3	удовлетворительно
менее 12	2	неудовлетворительно
При наличии 15 вопросов в тесте:		•
14 ÷ 15	5	отлично
12 ÷ 13	4	хорошо
10 ÷ 11	3	удовлетворительно
менее 10	2	неудовлетворительно
При наличии 10 вопросов в тесте:		
9 ÷ 10	5	онрилто
7 ÷ 8	4	хорошо
5 ÷ 6	3	удовлетворительно
менее 5	2	неудовлетворительно
При наличии 5 вопросов в тесте:		
5	5	отлично
4	4	хорошо
3	3	удовлетворительно
2	2	неудовлетворительно