#### МИНОБРНАУКИ РОССИИ

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

Кафедра общеобразовательных дисциплин и IT технологий



## РАБОЧАЯ ПРОГРАММА

## ДИСЦИПЛИНЫ

«Б1.Д.Б.17 Математика»

Уровень высшего образования

## БАКАЛАВРИАТ

## Направление подготовки

13.03.02 Электроэнергетика и электротехника

(код и наименование направления подготовки)

## <u>Электроснабжение</u>

(наименование направленности (профиля) образовательной программы)

Квалификация *Бакалавр* 

Форма обучения *Очная* 

| Рабочая         | программа   | дисциплины             | «Б1.Д.Б.17 | Математика» | /сост. | д.к. | Афанасова | - |
|-----------------|-------------|------------------------|------------|-------------|--------|------|-----------|---|
| Кумертау: Кумер | тауский фил | <b>тиал ОГУ, 202</b> 3 | 3          |             |        |      |           |   |

Рабочая программа предназначена обучающимся очной формы обучения по направлению подготовки 13.03.02 Электроэнергетика и электротехника

<sup>©</sup> Афанасова Д.К., 2023

<sup>©</sup> Кумертауский филиал ОГУ, 2023

#### 1 Цели и задачи освоения дисциплины

**Цель (цели)** освоения дисциплины — овладение студентами математическим аппаратом для анализа, моделирования и решения прикладных задач в системе электроснабжения.

#### Задачи:

- -изучить основные математические понятия необходимые для решения инженерных задач;
- -овладеть основными приемами анализа и моделирования устройств, процессов и явлений при поиске оптимальных решений прикладных задач;
- -выработать у студентов умение самостоятельно расширять свои знания, проводить анализ прикладных инженерных задач.

#### 2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: E1.Д.E.4 Безопасность жизнедеятельности, E1.Д.E.14 Основы экономики и финансовой грамотности, E1.Д.E.22 Электрические машины, E1.Д.E.23 Электрические и электронные аппараты, E1.Z.E.24 Электроника, E1.Z.E.24 Основы электроэнергетики, E1.Z.E.24 Специализированное программное обеспечение для проектирования систем электроснабжения, E1.Z.E.13 Переходные процессы в электроэнергетических системах, E1.Z.E.14 Техника высоких напряжений

## 3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

|                          |                                   | Планируемые результаты        |
|--------------------------|-----------------------------------|-------------------------------|
| Код и наименование       | Код и наименование индикатора     | обучения по дисциплине,       |
| формируемых компетенций  | достижения компетенции            | характеризующие этапы         |
|                          |                                   | формирования компетенций      |
| ОПК-3 Способен применять | ОПК-3-В-1 Применяет               | <u>Знать:</u>                 |
| соответствующий физико-  | математический аппарат            | основные понятия и методы     |
| математический аппарат,  | аналитической геометрии, линейной | линейной и векторной алгебры, |
| методы анализа и         | алгебры, дифференциального и      | аналитической геометрии,      |
| моделирования,           | интегрального исчисления функции  | теории комплексных чисел,     |
| теоретического и         | одной переменной                  | дифференциального             |
| экспериментального       | ОПК-3-В-2 Применяет               | исчисления, интегрирования,   |
| исследования при решении | математический аппарат теории     | разложении функций в ряды,    |
| профессиональных задач   | функции нескольких переменных,    | теории графов, теории         |
|                          | теории функций комплексного       | вероятностей, математической  |
|                          | переменного, теории рядов, теории | статистики                    |
|                          | дифференциальных уравнений        | <u>Уметь:</u>                 |
|                          | ОПК-3-В-3 Применяет               | использовать математический   |
|                          | математический аппарат теории     | аппарат при изучении других   |
|                          | вероятностей и математической     | дисциплин и при решении задач |
|                          | статистики                        | Владеть:                      |
|                          | ОПК-3-В-4 Применяет               | методами построения           |
|                          | математический аппарат численных  | математических моделей        |
|                          | методов                           | профессиональных задач и      |
|                          |                                   | содержательной интерпретации  |

|                         |                               | Планируемые результаты   |
|-------------------------|-------------------------------|--------------------------|
| Код и наименование      | Код и наименование индикатора | обучения по дисциплине,  |
| формируемых компетенций | достижения компетенции        | характеризующие этапы    |
|                         |                               | формирования компетенций |
|                         |                               | полученных результатов   |

## 4 Структура и содержание дисциплины

## 4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 10 зачетных единиц (360 академических часов).

| Вид работы                                | Трудоемкость,<br>академических часов |           |           |        |  |  |  |
|-------------------------------------------|--------------------------------------|-----------|-----------|--------|--|--|--|
| Biig pacersi                              | 1 семестр                            | 2 семестр | 3 семестр | всего  |  |  |  |
| Общая трудоёмкость                        | 144                                  | 144       | 72        | 360    |  |  |  |
| Контактная работа:                        | 50,25                                | 51,25     | 35,25     | 136,75 |  |  |  |
| Лекции (Л)                                | 34                                   | 34        | 18        | 86     |  |  |  |
| Практические занятия (ПЗ)                 | 16                                   | 16        | 16        | 48     |  |  |  |
| Консультации                              |                                      | 1         | 1         | 2      |  |  |  |
| Промежуточная аттестация (зачет, экзамен) | 0,25                                 | 0,25      | 0,25      | 0,75   |  |  |  |
| Самостоятельная работа:                   | 93,75                                | 92,75     | 36,75     | 223,25 |  |  |  |
| самоподготовка (проработка и повторение   | 34,75                                | 34,75     | 4,75      | 74,25  |  |  |  |
| лекционного материала и материала         |                                      |           |           |        |  |  |  |
| учебников и учебных пособий;              |                                      |           |           |        |  |  |  |
| - подготовка к практическим занятиям;     | 35                                   | 34        | 8         | 77     |  |  |  |
| - подготовка к экзамену /зачету           | 24                                   | 24        | 24        | 72     |  |  |  |
| Вид итогового контроля (зачет, экзамен,   | зачет                                | экзамен   | экзамен   |        |  |  |  |
| дифференцированный зачет)                 |                                      |           |           |        |  |  |  |

## Разделы дисциплины, изучаемые в 1 семестре

|              |                                           | Количество часов |                      |    | 3  |         |  |
|--------------|-------------------------------------------|------------------|----------------------|----|----|---------|--|
| №<br>раздела | Наименование разделов                     | всего            | аудиторная<br>работа |    |    | внеауд. |  |
|              |                                           |                  | Л                    | П3 | ЛР | работа  |  |
| 1            | Линейная алгебра                          | 22               | 6                    | 4  |    | 12      |  |
| 2            | Аналитическая геометрия                   | 20               | 6                    | 2  |    | 12      |  |
| 3            | Векторные пространства                    | 18               | 4                    | 2  |    | 12      |  |
| 4            | Комплексные числа                         | 16               | 2                    | 2  |    | 12      |  |
| 5            | Введение в математический анализ          | 20               | 6                    | 2  |    | 12      |  |
| 6            | Дифференциальное исчисление функции одной | 18               | 4                    | 2  |    | 12      |  |
| O            | переменной                                |                  |                      |    |    |         |  |
| 7            | Исследование функции с помощью производ-  | 18               | 4                    | 2  |    | 12      |  |
| /            | ных                                       |                  |                      |    |    |         |  |
| 8            | Теория многочленов                        | 12               | 2                    |    |    | 10      |  |
|              | Итого:                                    | 144              | 34                   | 16 |    | 94      |  |

## Разделы дисциплины, изучаемые в 2 семестре

|                     |                       | ]     | Колич | нество           | часон | 3                 |
|---------------------|-----------------------|-------|-------|------------------|-------|-------------------|
| <u>№</u><br>раздела | Наименование разделов | всего |       | циторі<br>работа | a     | внеауд.<br>работа |
|                     |                       |       | Л     | ПЗ               | ЛР    | paoora            |

|              |                                   | ]     | Количество часов     |    |         |        |
|--------------|-----------------------------------|-------|----------------------|----|---------|--------|
| №<br>раздела | Наименование разделов             | всего | аудиторная<br>работа |    | внеауд. |        |
|              |                                   |       | Л                    | П3 | ЛР      | работа |
| 9            | Неопределенный интеграл           | 28    | 8                    | 4  |         | 16     |
| 10           | Определенный интеграл             | 24    | 6                    | 2  |         | 16     |
| 11           | Функции нескольких                | 22    | 4 2                  |    | 16      |        |
|              | переменных                        |       |                      |    |         |        |
| 12           | Кратные и криволинейные интегралы | 21    | 4                    | 2  |         | 15     |
| 13           | Дифференциальные уравнения        | 28    | 8                    | 4  |         | 16     |
| 14           | Ряды                              | 21    | 4                    | 2  |         | 15     |
|              | Итого:                            | 144   | 34                   | 16 |         | 94     |

Разделы дисциплины, изучаемые в 3 семестре

|              |                                      | ]                          | Колич | 3  |    |         |  |
|--------------|--------------------------------------|----------------------------|-------|----|----|---------|--|
| №<br>раздела | Наименование разделов                | аудиторная<br>всего работа |       |    |    | внеауд. |  |
| _            |                                      |                            | Л     | ПЗ | ЛР | работа  |  |
| 15           | Теория вероятностей и математическая | 72                         | 18    | 16 |    | 38      |  |
|              | статистика                           |                            |       |    |    |         |  |
|              | Итого:                               | 72                         | 18    | 16 |    | 38      |  |
|              | Всего:                               | 360                        | 86    | 48 |    | 226     |  |

**Раздел 1. Линейная алгебра** Матрицы: основные определения, классификация, операции над матрицами (сложение, вычитание, умножение). Элементарные преобразования матриц, приведение к треугольному виду, транспонирование матриц, их свойства.

Определители. Вычисление определителей II, III порядка. Определители n-го порядка и их свойства. Миноры и алгебраические дополнения. Разложение определителя по строке (столбцу).

Обратная матрица: определение, свойства. Применение обратной матрицы для решения систем.

Ранг матрицы. Теорема о ранге. Вычисление ранга матрицы.

Системы m линейных уравнений с n неизвестными: основные определения, классификация. Решение системы m линейных уравнений с n неизвестными методом Гаусса.

Решение системы п линейных уравнений с п неизвестными по правилу Крамера.

Совместность системы линейных алгебраических уравнений. Однородные и неоднородные системы, теорема Кронекера-Капелли. Фундаментальная система решений.

## Раздел 2. Аналитическая геометрия.

Прямоугольная декартова система координат.

Векторы на плоскости и в пространстве. Линейные операции над векторами. Скалярное, векторное и смешанное произведение.

Прямая и плоскость в пространстве. Взаимное расположение прямых и плоскостей.

Кривые и поверхности 2-го порядка.

#### Раздел 3. Векторные пространства

Векторное пространство. Базис, размерность, изоморфизм векторных пространств. Матрица перехода от одного базиса к другому. Векторные подпространства.

Евклидово пространство. Ортогональные и ортонормированные системы векторов.

**Раздел 4. Комплексные числа.** Комплексные числа. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая, тригонометрическая и показательная форма записи комплексных чисел. Арифметические операции над комплексными числами. Формула Муавра. Корни из комплексных чисел. Формула Эйлера и ее применение.

**Раздел 5. Введение в математический анализ.** Числовая последовательность. Арифметические операции над числовыми последовательностями. Бесконечно большие и бесконечно малые последовательности. Предел числовой последовательности. Предельный переход в неравенствах. Монотонные последовательности. Существование предела монотонной ограниченной последовательности.

Понятие функции. Область ее определения, способы задания функции. Основные элементарные функции, их свойства и графики. Сложные и обратные функции.

Предел функции в точке и бесконечности. Теоремы о пределах функций. Односторонние пределы.

Понятие функции, ограниченной на множестве и в окрестности точки. Теоремы об ограниченности функций, имеющих предел. Замечательные пределы.

Бесконечно большие и бесконечно малые функции. Сравнение бесконечно больших и бесконечно малых функций. Основные эквивалентности.

Непрерывные функции: локальные свойства непрерывных функций; непрерывность функции от функции; точка разрыва; ограниченность функции, непрерывной на отрезке; существование наибольшего и наименьшего значений; прохождение через все промежуточные значения; монотонные функции, существование и непрерывность обратной функции, непрерывность элементарных функций.

Непрерывные функции: локальные свойства непрерывных функций; непрерывность функции от функции; точка разрыва; ограниченность функции, непрерывной на отрезке; существование наибольшего и наименьшего значений; прохождение через все промежуточные значения; монотонные функции, существование и непрерывность обратной функции, непрерывность элементарных функций.

**Раздел 6.** Дифференциальное исчисление функции одной переменной. Производная функции в точке, её геометрический и механический смысл. Производная суммы, произведения, частного. Производная сложной функции, производная обратной функции. Производная параметрической и неявно заданной функции. Таблица производных.

Понятие дифференцируемости функции в точке. Необходимые и достаточные условия дифференцируемости функции в точке. Связь между дифференцируемостью и непрерывностью функции в точке. Уравнения касательной и нормали.

Дифференциал функции и его свойства. Связь дифференциала функции с производной. Геометрический смысл дифференциала, применение дифференциала в приближенных вычислениях.

Производные и дифференциалы высших порядков.

Основные теоремы дифференциального исчисления (теорема Ферма, Роля, Лагранжа, Коши).

Раскрытие неопределенностей с помощью правила Лопиталя.

**Раздел 7. Исследование функций с помощью производных.** Условия монотонности функций. Точки экстремума. Необходимые и достаточные условия экстремума. Нахождение наибольшего и наименьшего значения функции, дифференцируемой на отрезке.

Исследование функции на выпуклость и вогнутость, точки перегиба.

Асимптоты кривых. Общая схема исследования функций и построения графиков.

**Раздел 8. Теория многочленов.** Многочлены, теорема Безу. Основная теорема алгебры. Разложение многочлена с действительными коэффициентами на линейные и квадратичные множители.

Разложение рациональных дробей на простейшие.

**Раздел 9. Неопределенный интеграл.** Первообразные. Неопределенный интеграл и его свойства. Непосредственное интегрирование, интегрирование путем подведения под знак дифференциала. Метод подстановки: замена переменной, тригонометрические подстановки.

Интегрирование по частям.

Простейшие интегралы, содержащие квадратный трехчлен.

Интегрирование рациональных дробей: метод неопределенных коэффициентов, метод Остроградского.

Интегрирование иррациональных функций.

Интегрирование тригонометрических функций

**Раздел 10. Определенный интеграл.** Задачи, приводящие к понятию определенного интеграла. Определенный интеграл как предел интегральных сумм. Основные свойства определенного интеграла.

Вычисление определенного интеграла. Теорема о производной интеграла с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям.

Приложение определенного интеграла.

Несобственные интегралы I и II рода, их свойства.

**Раздел 11. Функции нескольких переменных.** Определение функции нескольких переменных. Область определения, предел, непрерывность, геометрическое изображение.

Частные производные и их геометрический смысл.

Понятие дифференцируемости функции. Необходимые и достаточные условия дифференцируемости функции.

Полное приращение полный дифференциал функций, связь с частными производными. Применение дифференциала в приближенных вычислениях.

Производные от сложных функций и от функций, заданных неявно.

Частные производные и дифференциалы высших порядков.

Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности.

Экстремумы функций нескольких переменных. Необходимые и достаточные условия экстремума.

**Раздел 12. Кратные и криволинейные интегралы.** Задача, приводящая к понятию двойного интеграла. Двойной интеграл, как предел интегральных сумм. Геометрический смысл двойного интеграла. Свойства. Сведение двойного интеграла к повторному.

Замена переменных в двойном интеграле. Вычисление двойного интеграла в полярных координатах.

Геометрические и физические приложения двойного интеграла

Тройной интеграл, как предел интегральных сумм. Сведение тройного интеграла к повторному. Замена переменных тройном интеграле.

Вычисление тройного интеграла в цилиндрических и сферических координатах. Приложения.

Криволинейные интегралы и интегралы по поверхности: криволинейные интегралы; формула Грина; интегралы по поверхности; формула Остроградского; элементарная формула Стокса; условия независимости криволинейного интеграла от формы пути.

**Раздел 13.** Дифференциальные уравнения. Физические задачи, приводящие к дифференциальным уравнениям I порядка. Решение уравнения, начальные условия. Задача Коши, теорема существования и единственности задачи Коши. Общее и частное решения, геометрический смысл общего и частного решения.

Дифференциальные уравнения с разделенными переменными. Дифференциальные уравнения с разделяющимися переменными.

Однородные уравнения.

Линейные уравнения I порядка. Метод вариации произвольной постоянной. Уравнение Бернулли.

Уравнения в полных дифференциалах.

Дифференциальные уравнения высших порядков. Задача Коши. Понятие общего и частного решения. Теорема Коши.

Уравнения, допускающие понижение порядка.

Линейные однородные дифференциальные уравнения, их свойства. Линейно зависимые и линейно независимые функции на отрезке. Вронскиан. Теоремы о вронскиане. Теорема о структуре общего решения линейного однородного дифференциального уравнения.

Линейные однородные уравнения с постоянными коэффициентами.

Теорема о структуре общего решения линейного неоднородного уравнения. Метод Лагранжа.

Решение линейного неоднородного дифференциального уравнения со специальной правой частью.

**Раздел 14. Ряды.** Числовые ряды. Сходимость и сумма ряда. Необходимое условие сходимости ряда. Арифметические операции над рядами: умножение на число, сложение, вычитание.

Ряды с положительными членами. Теоремы сравнения. Признаки сходимости Даламбера и Коши. Интегральный признак сходимости ряда.

Знакочередующиеся ряды. Теорема Лейбница

Знакопеременные ряды. Абсолютно и условно сходящиеся ряды. Теоремы об абсолютной и условной сходимости ряда.

Функциональные ряды. Область сходимости. Равномерная сходимость Признак Вейерштрасса.

Степенные ряды. Теорема о Абеля. Интервал сходимости. Свойство степенных рядов. Ряды Тейлора и Маклорена.

**Раздел 15. Теория вероятностей и математическая статистика.** Комбинаторика и её основные формулы. События. Виды событий. Операции над событиями. Вероятность события. Классическое, статистическое, геометрическое определения вероятности события. Свойства вероятности.

Теорема сложения вероятностей. Теоремы о вероятности противоположных событий, невозможных событий, событий, образующих полную группу.

Условная вероятность. Теорема умножения вероятностей. Следствия теорем сложения и умножения: теорема сложения вероятностей совместных событий, формула полной вероятности, формула Байеса.

Схема Бернулли. Формула Бернулли. Формула Пуассона. Локальная и интегральная формулы Муавра-Лапласа.

Случайные величины: дискретные и непрерывные величины. Законы распределения дискретных случайных величин: многоугольник распределения, ряд распределения, функция распределения и её свойства, биномиальное распределение, распределение Пуассона.

Числовые характеристики дискретных случайных величин. Математическое ожидание, дисперсия и их свойства, среднее квадратическое отклонение. Непрерывная случайная величина, её функция распределения. Плотность распределения непрерывных случайных величин и её свойства. Числовые характеристики непрерывных случайных величин. Основные законы распределения непрерывных случайных величин: равномерное, показательное и нормальное распределения.

Задача математической статистики. Генеральная совокупность и выборка. Виды выборки. Способы отбора.

Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма.

Статистические оценки параметров распределения. Точность оценки, надежность, доверительный интервал.

Доверительные интервалы для параметров случайной величины, распределенной по нормальному закону.

Проверка статистических гипотез. Метод наибольшего правдоподобия. Статистические методы обработки экспериментальных данных.

#### 4.3 Практические занятия (семинары)

| № занятия  | $N_{\underline{0}}$ | Тема                                                           | Кол-во |
|------------|---------------------|----------------------------------------------------------------|--------|
| лу запятия | раздела             | 1 CMa                                                          | часов  |
| 1          | 1                   | Матрицы. Операции над матрицами. Определитель. Обратная        | 2      |
|            |                     | матрица. Ранг матрицы                                          |        |
| 2          | 1                   | Системы линейных уравнений.                                    | 2      |
| 3          | 2                   | Линейные операции над векторами. Скалярное, векторное и сме-   | 2      |
|            |                     | шанное произведение.                                           |        |
| 4          | 3                   | Векторные пространства                                         | 2      |
| 5          | 4                   | Комплексные числа.                                             | 2      |
| 6          | 5                   | Функция. Пределы                                               | 2      |
| 7          | 6                   | Дифференциал и производная функции. Производные и дифференциа- | 2      |
|            |                     | лы высших порядков.                                            |        |
| 8          | 7                   | Исследование функций с помощью производных                     | 2      |
| 9          | 9                   | Основные методы интегрирования                                 | 2      |
| 10         | 9                   | Интегрирование рациональных дробей. Интегрирование             | 2      |
|            |                     | иррациональных функций. Интегрирование тригонометрических      |        |
|            |                     | функций                                                        |        |
| 11         | 10                  | Вычисление определенного интеграла                             | 2      |
| 12         | 11                  | Функции нескольких переменных                                  | 2      |
| 13         | 12                  | Двойные интегралы                                              | 2      |
| 14         | 13                  | Дифференциальные уравнения первого порядка                     | 2      |
| 15         | 13                  | Дифференциальные уравнения второго порядка                     | 2      |
| 16         | 14                  | Числовые ряды                                                  | 2      |
| 17         | 15                  | Классическое определение вероятности. Формулы комбинаторики    | 2      |
| 18         | 15                  | Теоремы сложения и умножения вероятностей                      | 2      |
| 19         | 15                  | Формулы условной и полной вероятностей. Формула Байеса         | 2      |
| 20         | 15                  | Формулы Бернулли, Пуассона. Локальная и интегральная теоремы   |        |
|            |                     | Муавра-Лапласа                                                 |        |
| 21         | 15                  | Числовые характеристики случайных величин                      | 2      |

| № занятия  |         | Тема                                                       | Кол-во |
|------------|---------|------------------------------------------------------------|--------|
| ле запятия | раздела | 1 CMa                                                      | часов  |
| 22         | 15      | Статистические оценки параметров распределения             | 2      |
| 23         | 15      | Доверительные интервалы для параметров случайной величины, | 2      |
|            |         | распределенной по нормальному закону.                      |        |
| 24         | 15      | Проверка статистических гипотез.                           | 2      |
|            |         | Итого:                                                     | 48     |

## 5.1 Основная литература

- 1. Богомолов, Н. В. Математика: учебник для вузов / Н. В. Богомолов, П. И. Самойленко. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2023. 401 с. (Высшее образование). ISBN 978-5-534-07001-9. Режим доступа: <a href="https://urait.ru/bcode/510750">https://urait.ru/bcode/510750</a>.
- 2. Шипачев, В. С. Высшая математика. Полный курс : учебник для бакалавров / В. С. Шипачев; [под ред. А. Н. Тихонова].- 4-е изд., испр. и доп.. Москва : Юрайт, 2014. 607 с.. (Бакалавр. Базовый курс) ISBN 978-5-9916-3325-3.

## 5.2 Дополнительная литература

- 1. Богомолов, Н. В. Математика. Задачи с решениями: учебное пособие для вузов / Н. В. Богомолов. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2023. 755 с. (Высшее образование). ISBN 978-5-534-16210-3. Режим доступа: <a href="https://urait.ru/bcode/530619">https://urait.ru/bcode/530619</a>.
- 2. Гисин, В. Б. Математика. Практикум: учебное пособие для вузов / В. Б. Гисин, Н. Ш. Кремер. Москва: Издательство Юрайт, 2023. 204 с. (Высшее образование). ISBN 978-5-9916-8785-0. Режим доступа: <a href="https://urait.ru/bcode/511699">https://urait.ru/bcode/511699</a>.

## 5.3 Интернет-ресурсы

- 1. <a href="http://www.mccme.ru/">http://www.mccme.ru/</a> URL: Московский центр непрерывного математического образования
  - 2. http://vilenin.narod.ru/Mm/Books/Books.htm Математическая библиотека
  - 3. <a href="http://en.edu.ru/">http://en.edu.ru/</a> Естественно-научный образовательный портал
- 4. Вестник Московского Университета. Серия 1. Математика. Механика: журнал. М.: Агенство «Роспечать» периодическое научное издание отражает тематику важнейших направлений теоретических исследований по математике и механике. <a href="http://vestnik.math.msu.su>start-in-fr.html">http://vestnik.math.msu.su>start-in-fr.html</a>
- 5. Алгебра и анализ: журнал.- Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН <a href="http://www.pdmi.ras.ru/AA">http://www.pdmi.ras.ru/AA</a>
- 6. Дифференциальные уравнения: журнал. М.: МАИК "Наука /Интерпериодика".- http://nasb.gov.by/eng/publications/difur/index.php

## 5.4 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система РЕД ОС
- 2. Пакет офисных приложений LibreOffice (Writer, Calc, Impress, Math, Draw, Base)
- 3. САПР Компас-3D
- 4. 7zip архиватор: P7Zip
- 5. Веб-браузер с поддержкой ГОСТовского шифрования для работы с ГИС (госИС):
- 6. Программа для создания и обработки растровой графики с частичной поддержкой работы с векторной графикой: GIMP
- 7. Простой редактор файлов PDF: PDFedit
- 8. http://newgdz.com/spravochnik Справочник по высшей математике
- 9. <a href="http://aist.osu.ru/">http://aist.osu.ru/</a> АИССТ ОГУ автоматизированная интерактивная система сетевого тестирования ОГУ

## 6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в учебных аудиториях.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационнообразовательную среду филиала и ОГУ.

## К рабочей программе прилагаются:

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;

Методические рекомендации для обучающихся по освоению дисциплины.

# **ЛИСТ** согласования рабочей программы

Направление подготовки <u>13.03.02</u> Электроэнергетика и электротехника код и наименование Профиль: Электроснабжение Дисциплина: *Б1.Д.Б.17 Математика* Форма обучения: очная Год набора *2023* РЕКОМЕНДОВАНА на заседании кафедры ООД и IT-технологий наименование кафедры протокол № 1 от "31" августа 2023 г. Ответственный исполнитель, и.о. заведующего кафедрой ООД и ІТ-технологий Д.К. Афанасова наименование кафедры расшифровка подписи Исполнители: Доцент кафедры ООД и ІТ-технологий Д.К. Афанасова расшифровка подписи должность должность подпись расшифровка подписи ОДОБРЕНА на заседании НМС, протокол № 1 от "31 " августа 2023 г. Председатель НМС Л.Ю. Полякова расшифровка подписи СОГЛАСОВАНО: Заведующий кафедрой ЭПП А.В. Богданов расшифровка подписи Заведующий библиотекой С.Н. Козак

подпись

расшифровка подписи