Министерство науки и высшего образования Российской Федерации Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

Кафедра общеобразовательных дисциплин и ІТ-технологий

УТВЕРЖДАЮ
Заместитель директора по УМ и НР
Л.Ю. Полякова
(подние, расшифровка подписи)

2023г

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ *«Б1.Д.Б.13 Физика»*

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

13.03.01 Теплоэнергетика и теплотехника (код и наименование направления подготовки)

<u>Энергообеспечение предприятий</u> (наименование направленности (профиля) образовательной программы)

Квалификация *Бакалавр*

Форма обучения *Очная*

Рабочая программа дисциплины	«Б1.Д.Б.13	Физика» /coc	г. С.М.	Бустубаева	- Кумертау:
Кумертауский филиал ОГУ, 2023					

Рабочая программа предназначена обучающимся очной формы обучения по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины: формирование представления об основных физических понятиях и методах, роли и месте физики в различных сферах человеческой деятельности.

Залачи

- изучить законы окружающего мира в их взаимосвязи;
- овладеть фундаментальными принципами и методами решения научно-технических задач;
- освоить основные физические теории, позволяющие описать явления в природе, и пределы применимости этих теорий для решения современных и перспективных технологических задач.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: Б1.Д.Б.4 Безопасность жизнедеятельности, Б1.Д.Б.16 Электротехническое и конструкционное материаловедение, Б1.Д.Б.19 Техническая механика, Б1.Д.Б.20 Гидрогазодинамика, Б1.Д.Б.21 Теоретические основы теплотехники, Б1.Д.Б.22 Основы трансформации теплоты, Б1.Д.В.2 Теоретические основы электротехники, Б1.Д.В.3 Основы электроэнергетики, Б1.Д.В.12 Физико-химические основы водоподготовки, Б1.Д.В.14 Тепломассообменное оборудование предприятий, Б1.Д.В.15 Котельные установки и парогенераторы, Б1.Д.В.Э.2.1 Электрические машины, Б1.Д.В.Э.2.2 Электропривод

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

	Код и наименование	Планируемые результаты обучения по
Код и наименование		
формируемых компетенций	индикатора достижения	дисциплине, характеризующие этапы
	компетенции	формирования компетенций
ОПК-3 Способен применять	ОПК-3-В-2	Знать: - основные физические явления и
соответствующий физико-	Демонстрирует	основные законы физики; границы их
математический аппарат,	понимание физических	применимости, применение законов в
методы анализа и	явлений и умеет	важнейших практических приложениях.
моделирования,	применять физические	Уметь: - использовать методы физического
теоретического и	законы механики,	и математического моделирования к
экспериментального	молекулярной физики,	решению конкретных естественнонаучных
исследования при решении	термодинамики,	и технических задач;
профессиональных задач	электричества,	- истолковывать смысл физических
	магнетизма и оптики для	величин и понятий.
	решения типовых задач	Владеть: - навыками применения
		основных методов физико-математического
		анализа для решения естественнонаучных
		задач;
		- навыками обработки и интерпретирова-
		ния результатов естественнонаучного экс-
		перимента;
		- навыками использования методов
		физического моделирования в учебной
		деятельности

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 11 зачетных единиц (396 академических часов).

Вид работы	Трудоемкость, академических часов				
/\ F	1 семестр	2 семестр	всего		
Общая трудоёмкость	180	216	396		
Контактная работа:	61,25	61,25	122,5		
Лекции (Л)	28	28	56		
Практические занятия (ПЗ)	16	16	32		
Лабораторные работы (ЛР)	16	16	32		
Консультации	1	1	2		
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	0,5		
Самостоятельная работа:	118,75	154,75	273,5		
- самостоятельное изучение разделов (модули из раздела	26,75	68,75	95,5		
1Механика);					
- самоподготовка (проработка и повторение лекционного	30	15	45		
материала и материала учебников и учебных пособий;					
- подготовка к лабораторным занятиям;	8	8	16		
- подготовка к практическим занятиям;	8	8	16		
- подготовка к рубежному контролю;	5	5	10		
- выполнение контрольной работы;	5	5	10		
-подготовка к экзамену.	36	45	81		
Вид итогового контроля (зачет, экзамен,	экзамен	экзамен			
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 1 семестре

		Количество часов					
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.	
			Л	П3	ЛР	работа	
1	Физические основы механики	50	10	4	12	24	
2	Молекулярная физика и термодинамика	50	6	4	-	40	
3	Электростатика	50	8	4	4	34	
4	Постоянный электрический ток	30	4	4	-	22	
	Итого:		28	16	16	120	

Разделы дисциплины, изучаемые в 2 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
5	Электромагнетизм	54	14	6	10	24
6	Волновая оптика	54	6	4	4	40
7	Квантовая физика	64	6	4	2	52
8	Физика атомного ядра	44	2	2		40
	Итого:	216	28	16	16	156
	Всего:	396	56	32	32	276

4.2 Содержание разделов дисциплины

Раздел 1. Физические основы механики. Физика как наука. Методы физического исследования: опыт, гипотеза, теория. Кинематика материальной точки. Динамика материальной точки. Фундаментальные взаимодействия. Импульс. Закон сохранения импульса. Энергия, механическая работа, мощность. Механика твердого тела. Основное уравнение динамики вращательного движения. Кинематическое описание движения жидкости.

Раздел 2. Молекулярная физика и термодинамика. Молекулярно-кинетическая теория (МКТ) идеальных газов. Распределение Максвелла. Среднее число столкновений и средняя длина свободного пробега молекул. Явления переноса в термодинамически неравновесных системах. Основы термодинамики. Теплоемкость идеального газа. Классическая теория теплоемкости и ее недостатки. Энтропия.

Раздел 3. Электростатика. Электродинамика. Электрический заряд, его свойства. Закон сохранения электрического заряда. Закон Кулона. Диэлектрическая проницаемость. Электрическое поле и его характеристики (напряженность и потенциал). Связь потенциала с напряженностью поля. Эквипотенциальные поверхности. Объемная, поверхностная и линейная плотности зарядов. Проводники в электрическом поле. Напряженность поля у поверхности проводника. Электростатическая защита.

Раздел 4. Постоянный электрический ток. Электрический ток. Условия существования постоянного тока. Характеристики тока. Сторонние силы. Электродвижущая сила (ЭДС). Напряжение. Источники ЭДС. Закон Ома для участка цепи. Сопротивление проводников. Зависимость сопротивления металлов от температуры. Закон Ома в дифференциальной форме. Работа и мощность тока. Закон Джоуля-Ленца. Закон Ома для неоднородного участка цепи, его анализ. Разветвленные цепи. Правила Кирхгофа для разветвленных цепей. Соединение источников тока и резисторов.

Раздел 5. Электромагнетизм. Закон Ампера. Действие магнитного поля на движущийся заряд. Сила Лоренца. Вихревой характер магнитного поля. Теорема о циркуляции вектора магнитной индукции. Магнитное поле соленоида и тороида. Магнитный поток. Работа перемещения контура с током в магнитном поле. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Явление самоиндукции и взаимоиндукции. Индуктивность. Энергия магнитного поля. Электромагнитные колебания. Анализ электромагнитных и механических колебаний (затухающие, незатухающие, вынужденные). Метод векторных диаграмм. Сложение гармонических колебаний. Резонанс. Переменный ток. Сопротивление, емкость и индуктивность в цепи переменного тока. Закон Ома для переменного тока. Резонанс напряжений. Резонанс токов. Мощность, выделяемая в цепи переменного тока.

Раздел 6. Волновая оптика. Интерференция света. Методы наблюдения интерференции света. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на одной щели.

Раздел 7. Квантовая физика. Тепловое излучение и его законы. Внешний фотоэффект. Уравнение Эйнштейна для внешнего фотоэффекта. Теория атома водорода по Бору. Постулаты Бора.

Раздел 8. Физика атомного ядра. Размер, состав и заряд атомного ядра. Дефект массы и энергия связи ядра. Модели ядра. Закон радиоактивного распада.

4.3 Лабораторные работы

№ ЛР	$N_{\underline{0}}$	Наименование лабораторных работ	Кол-во
J\≌ J11	раздела	паименование лаоораторных раоот	часов
1.	1	Определение плотности твердого тела	2
2.	1	Изучение динамики вращательного движения.	4
3.	1	Упругие и неупругие соударения	4
4.	1	Проверка закона сохранения энергии	2
5.	3	Электроизмерительные приборы	2
6.	3	Электростатическое поле	2

7.	5	Магнитное поле.	4
8.	5	Электромагнитная индукция.	2
9.	5	Свободные колебания в <i>RLC</i> -контуре.	2
10.	6	Определение радиуса кривизны линзы с помощью колец Ньютона.	2
11.	6	Интерференционный опыт Юнга.	4
12.	7	Внешний фотоэффект.	2
		Итого:	32

4.4 Практические занятия (семинары)

№ занятия	№	Тема	
лº занятия	раздела	Тема	часов
1	1	Кинематика материальной точки. Скорость и ускорение точки. Полное ускорение. Вращательное движение.	
2	1	Законы Ньютона. Силы в механике.	2
3	2	Основное уравнение МКТ. Уравнение состояния идеального газа, его законы.	2
4	2	I начало термодинамики.	2
5	3	Закон Кулона. Напряженность электрического поля.	2
6	3	Потенциал электрического поля. Конденсаторы.	2
7	4	Закон Ома для полной цепи	2
8	4	Правила Кирхгофа для разветвленных цепей	2
9	5	Магнитное поле. Сила Лоренца.	2
10	5	Закон электромагнитной индукции.	2
11	5	Переменный ток.	2
12	6	Интерференция света.	2
13	6	Дифракция света.	2
14	7	Тепловое излучение.	2
15	7	Внешний фотоэффект.	2
16	8	Дефект массы и энергия связи ядра. Радиоактивность.	2
		Итого:	32

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Трофимова, Т. И. Курс физики [Текст] : учеб.пособие для вузов / Т. И. Трофимова 18-е изд., перераб. и доп. М.: Издательский центр «Академия», 2018. 560с. ISBN 978-5-7695
- 2. Трофимова, Т. И. Руководство к решению задач по физике [Текст] : учебное пособие для бакалавров / Т. И. Трофимова. 3-е изд., перераб. и доп.. Москва : Юрайт, 2017. 265 с. (Бакалавр. Базовый курс). ISBN 978-5-9916-2328-5.

5.2 Дополнительная литература

- 1. Бустубаева, С.М. Методические рекомендации для проведения практических занятий по дисциплине «Физика» / С.М.Бустубаева Кумертау: Кумертауский филиал ОГУ, 2023. 8 с.
- 2. Бустубаева, С.М. Методические рекомендации по организации самостоятельной работы по дисциплине «Физика» /С.М. Бустубаева Кумертау: Кумертауский филиал ОГУ, 2023. 18 с.
- 3. Бустубаева, С.М. Методические рекомендации для проведения лабораторных работ по дисциплине «Физика» / С.М.Бустубаева Кумертау: Кумертауский филиал ОГУ, 2023. 8 с.
- 4. Демидченко, В. И. Физика: учебник / В.И. Демидченко, И.В. Демидченко. 6-е изд., перераб. и доп. Москва: ИНФРА-М, 2023. 581 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-010079-1. Режим доступа: https://znanium.com/catalog/product/1913243.
- 5. Андреева, Н. А. Физика : сборник задач : практическое пособие / Н. А. Андреева, Е. В. Корчагина. Воронеж : Воронежский институт ФСИН России, 2019. 188 с. — Режим доступа: https://znanium.com/catalog/product/1086249.
- 6. Физика. Практикум: учеб. пособие / Г.В. Врублевская, И.А. Гончаренко, А.В. Ильюшонок. М.: НИЦ Инфра-М; Мн.: Нов. знание, 2014. 286 с. (Высшее образование). ISBN 978-5-16-005340-0. Режим доступа: http://znanium.com/bookread2.php?book=252334.

5.3 Интернет-ресурсы

- 1. https://universarium.org/catalog «Универсариум», Медиотека: «Физика. Лекции»
- 2. http://aist.osu.ru/ AИССТ ОГУ автоматизированная интерактивная система сетевого тестирования ОГУ
 - 3. http://en.edu.ru/ Естественно-научный образовательный портал
- 4. Вестник Московского Университета. Серия 1. Математика. Механика: журнал. М.: Агенство «Роспечать» периодическое научное издание отражает тематику важнейших направлений теоретических исследований по математике и механике. http:// vestnik.math.msu.su>start-in-fr.html

5.4 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- Операционная система Microsoft Windows
- Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint, OneNote, Outlook, Publisher, Access)
 - Операционная система РЕД ОС
 - Пакет офисных приложений LibreOffice (Writer, Calc, Impress, Math, Draw, Base)
 - 7ziр архиватор: Р7Zip
- Веб-браузер с поддержкой ГОСТовского шифрования для работы с ГИС (госИС):
 Chromium
- Программа для создания и обработки растровой графики с частичной поддержкой работы с векторной графикой: GIMP
 - Простой редактор файлов PDF: PDFedit

- https://yandex.ru/ бесплатный российский Интернет обозреватель Яндекс. Браузер
- http://aist.osu.ru/ АИССТ ОГУ автоматизированная интерактивная система сетевого тестирования ОГУ

6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в учебных аудиториях. Лабораторные занятия проводятся в лаборатории физики.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационно-образовательную среду филиала и ОГУ.

ЛИСТ согласования рабочей программы

Направление подготовки: <u>13.03.01 Теплоэнергетика и те</u> код и наименование	?плотехника	
Профиль: <u>Энергообеспечение предприятий</u>		
Дисциплина: <i>Б1.Д.Б.13 Физика</i>		
Форма обучения: <i>очная</i> (очная, очно-заочная, заоч	иная)	
Год набора <u>2023</u>		
РЕКОМЕНДОВАНА на заседании кафедры общеобразовательных дисциплин и IT-технологий		
протокол № $1 $ от " $31 $ " $2023 $ г.	5/	
Ответственный исполнитель, и.о. заведующего кафедрой общеобразовательных дисциплин и IT-технологий подпименование кафедры	- ДЖ- пись	<u>Д.К.</u> Афанасова
Исполнители: Старший преподаватель кафедры ООД и ІТ-технологий	noonucy	С.М. Бустубаева
ОДОБРЕНА на заседании НМС, протокол № 1 от «04» сен	тября 2023г.	
Председатель НМС	подпись р	Л.Ю. Полякова асшифровка подписи
СОГЛАСОВАНО:	P.),
Зав. кафедрой ЭПП	подпись	А.В. Богданов расшифровка подписи
Заведующий библиотекой	подпись	С.Н. Козак