МИНОБРНАУКИ РОССИИ

Кумертауский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Кумертауский филиал ОГУ)

Кафедра общеобразовательных дисциплин и ІТ-технологий

УТВЕРЖДАЮ Зам директора по УМиНР Полякова Л.Ю. (подпись, расшифровка подписи)

"02 сентября 2022 г.

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б1.Д.Б.11 Физика»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

09.03.01 Информатика и вычислительная техника (код и наименование направления подготовки)

<u>Автоматизированные системы обработки информации и управления</u> (наименование направленности (профиля) образовательной программы)

Квалификация <u>Бакалавр</u>

Форма обучения Заочная Рабочая программа дисциплины « *Б1.Д.Б.11 Физика*» /сост. С.М. Бустубаева - Кумертау: Кумертауский филиал ОГУ, 2022

Рабочая программа предназначена обучающимся заочной формы по направлению подготовки <u>09.03.01 Информатика и вычислительная техника</u>

[©] Бустубаева С.М., 2022

[©] Кумертауский филиал ОГУ, 2022

1 Цели и задачи освоения дисциплины

Цель освоения дисциплины: формирование представления об основных физических понятиях и методах, роли и месте физики в различных сферах человеческой деятельности.

Задачи:

- изучить законы окружающего мира в их взаимосвязи;
- овладеть фундаментальными принципами и методами решения научно-технических задач;
- освоить основные физические теории, позволяющие описать явления в природе, и пределы применимости этих теорий для решения современных и перспективных технологических задач.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Отсутствуют

Постреквизиты дисциплины: *Б1.Д.Б.12* Электротехника и электроника, *Б1.Д.Б.25* Безопасность жизнедеятельности

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций		
ОПК-1 Способен	ОПК-1-В-1 Знает основы математики,	Знать: - основные физические		
применять	физики, вычислительной техники и	явления и основные законы физики;		
естественнонаучные и	программирования	границы их применимости,		
общеинженерные	ОПК-1-В-2 Умеет решать стандартные	применение законов в важнейших		
знания, методы	профессиональные задачи с	практических приложениях.		
математического	применением естественнонаучных и	Уметь: - использовать методы		
анализа и	обще-инженерных знаний, методов	физического и математического		
моделирования,	математического анализа и	моделирования к решенин		
теоретического и	моделирования	конкретных естественнонаучных и		
экспериментального	ОПК-1-В-3 Владеет навыками	технических задач;		
исследования в	теоретического и экспериментального	- истолковывать смысл физических		
профессиональной	исследования объектов	величин и понятий.		
деятельности	профессиональной деятельности	Владеть: - навыками применения		
		основных методов физико-		
		математического анализа для		
		решения естественнонаучных задач;		
		- навыками обработки и интерпре-		
		тирования результатов естественно-		
		научного эксперимента;		
		- навыками использования методов		
		физического моделирования в		
		учебной деятельности		

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 6 зачетных единиц (216 академических часов).

	Трудоемкость,					
Вид работы	академических часов					
	1 семестр	2 семестр	всего			
Общая трудоёмкость	108	108	216			
Контактная работа:	22,25	21,5	43,75			
Лекции (Л)	6	4	10			
Практические занятия (ПЗ)	8	8	16			
Лабораторные работы (ЛР)	8	8	16			
Консультации		1	1			
Промежуточная аттестация (зачет, экзамен)	0,25	0,5	0,75			
Самостоятельная работа:	85,75	86,5	172,25			
- выполнение контрольной работы (КонтрР);		+				
- самостоятельное изучение разделов (модули из раздела	51,75	47,5	99,25			
1Механика, 5 Электродинамика);						
- самоподготовка (проработка и повторение лекционного	30	30	60			
материала и материала учебников и учебных пособий);						
-подготовка к экзамену.	4	9	13			
Вид итогового контроля (зачет, экзамен,	зачет	экзамен				
дифференцированный зачет)						

Разделы дисциплины, изучаемые в 1 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Физические основы механики	46	2	2	8	34
2	Молекулярная физика и термодинамика	18	2	2	1	14
3	Электростатика	26	1	2	-	23
4	Постоянный электрический ток	18	1	2	-	15
	Итого:	108	6	8	8	86

Разделы дисциплины, изучаемые в 2 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
5	Электромагнетизм	35	1	2	8	24
6	Волновая оптика	37	1	2	-	34
7	Квантовая физика	24	1	2	-	21
8	Физика атомного ядра	22	1	2	-	19
	Итого:	108	4	8	8	88
	Всего:	216	10	16	16	174

4.2 Содержание разделов дисциплины

Раздел 1. Физические основы механики. Физика как наука. Методы физического исследования: опыт, гипотеза, теория. Кинематика материальной точки. Динамика материальной точки. Фундаментальные взаимодействия. Импульс. Закон сохранения импульса. Энергия, механическая работа, мощность. Механика твердого тела. Основное уравнение динамики вращательного движения. Кинематическое описание движения жидкости.

Раздел 2. Молекулярная физика и термодинамика. Молекулярно-кинетическая теория (МКТ) идеальных газов. Распределение Максвелла. Среднее число столкновений и средняя длина свободного пробега молекул. Явления переноса в термодинамически неравновесных системах. Основы термодинамики. Теплоемкость идеального газа. Классическая теория теплоемкости и ее недостатки. Энтропия.

Раздел 3. Электростатика. Электродинамика. Электрический заряд, его свойства. Закон сохранения электрического заряда. Закон Кулона. Диэлектрическая проницаемость. Электрическое поле и его характеристики (напряженность и потенциал). Связь потенциала с напряженностью поля. Эквипотенциальные поверхности. Объемная, поверхностная и линейная плотности зарядов. Проводники в электрическом поле. Напряженность поля у поверхности проводника. Электростатическая защита.

Раздел 4. Постоянный электрический ток. Электрический ток. Условия существования постоянного тока. Характеристики тока. Сторонние силы. Электродвижущая сила (ЭДС). Напряжение. Источники ЭДС. Закон Ома для участка цепи. Сопротивление проводников. Зависимость сопротивления металлов от температуры. Закон Ома в дифференциальной форме. Работа и мощность тока. Закон Джоуля-Ленца. Закон Ома для неоднородного участка цепи, его анализ. Разветвленные цепи. Правила Кирхгофа для разветвленных цепей. Соединение источников тока и резисторов.

Раздел 5. Электромагнетизм. Закон Ампера. Действие магнитного поля на движущийся заряд. Сила Лоренца. Вихревой характер магнитного поля. Теорема о циркуляции вектора магнитной индукции. Магнитное поле соленоида и тороида. Магнитный поток. Работа перемещения контура с током в магнитном поле. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Явление самоиндукции и взаимоиндукции. Индуктивность. Энергия магнитного поля. Электромагнитные колебания. Анализ электромагнитных и механических колебаний (затухающие, незатухающие, вынужденные). Метод векторных диаграмм. Сложение гармонических колебаний. Резонанс. Переменный ток. Сопротивление, емкость и индуктивность в цепи переменного тока. Закон Ома для переменного тока. Резонанс напряжений. Резонанс токов. Мощность, выделяемая в цепи переменного тока.

Раздел 6. Волновая оптика. Интерференция света. Методы наблюдения интерференции света. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на одной щели.

Раздел 7. Квантовая физика. Тепловое излучение и его законы. Внешний фотоэффект. Уравнение Эйнштейна для внешнего фотоэффекта. Теория атома водорода по Бору. Постулаты Бора.

Раздел 8. Физика атомного ядра. Размер, состав и заряд атомного ядра. Дефект массы и энергия связи ядра. Модели ядра. Закон радиоактивного распада.

4.3 Лабораторные работы

№ ЛР	No॒	Наименование лабораторных работ	Кол-во
0 12 0 11	раздела	Transferredamine state oper opribilit pacer	часов
1.	1	Определение плотности твердого тела	2
2.	1	Движение под действием постоянной силы	2
3.	1	Соударения упругих шаров	4
4.	5	Магнитное поле.	4
5.	5	Электромагнитная индукция.	2
6.	5	Свободные колебания в <i>RLC</i> -контуре.	2
		Итого:	16

4.4 Практические занятия (семинары)

№ занятия	№ раздела	Тема	Кол-во часов
1	1	Кинематика материальной точки. Скорость и ускорение точки. Полное ускорение. Вращательное движение.	2
2	2	Основное уравнение МКТ. Уравнение состояния идеального газа, его законы.	2
3	3	Закон Кулона. Напряженность электрического поля.	2
4	4	Закон Ома для полной цепи	2
5	5	Магнитное поле. Сила Лоренца.	2
6	6	Интерференция света. Дифракция света.	2
7	7	Внешний фотоэффект.	2
8	8	Дефект массы и энергия связи ядра. Радиоактивность.	2
		Итого:	16

4.5 Контрольная работа (2 семестр)

Вариант 0

- 1. По двум бесконечно длинным прямым параллельным проводам текут токи I_1 =20 A и I_2 =30 A в одном направлении. Расстояние d между проводами равно 10 см. Вычислить магнитную индукцию B в точке, удаленной от обоих проводов на одинаковое расстояние r=10 см.
- 2. Оптическая система представляет собой тонкую плосковыпуклую стеклянную линзу, выпуклая поверхность которой посеребрена. Определить главное фокусное расстояние f такой системы, если радиус кривизны R сферической поверхности линзы равен 60 см.
- 3. В опыте Юнга отверстия освещались монохроматическим светом с длиной волны $\lambda = 600~\text{нm}$. Расстояние между отверстиями l=1~мm, расстояние от отверстий до экрана L=3~m. Найти положение трех первых светлых полос.
- 4. Плосковыпуклая стеклянная линза с f=1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете $r_5=1,1$ мм. Определить длину световой волны λ .
- 5. Какое наименьшее число N_{min} штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ_1 =589,0 нм и λ_2 =589,6 нм? Какова длина 1 такой решетки, если постоянная решетки d=5 мкм?

- 6. Какую энергетическую светимость $R_{\scriptscriptstyle \ni}$ имеет абсолютно черное тело, если максимум спектральной плотности его энергетической светимости приходится на длину волны $\lambda = 484~\text{нм}$?
- 7. Задерживающее напряжение для серебряной пластинки ($A_{{\scriptscriptstyle B1}}=4,7\,\,{}_{^3}B$) составляет $U_{{\scriptscriptstyle 31}}=0,95\,\,B$. При тех же условиях для пластинки цинка задерживающее напряжение равно $U_{{\scriptscriptstyle 32}}=1,65\,\,B$. Определите работу выхода $A_{{\scriptscriptstyle B2}}$ электронов из цинка.
- 8. На расстоянии r=5 м от точечного монохроматического ($\lambda=0,5$ мкм) изотропного источника расположена площадка (S=8 мм²) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения P=100 Вт.
- 9. Из каждого миллиона атомов радиоактивного изотопа каждую секунду распадается 200 атомов. Определить период полураспада $T_{1/2}$ изотопа.

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Трофимова, Т. И. Курс физики [Текст] : учеб.пособие для вузов / Т. И. Трофимова 18-е изд., перераб. и доп. М.: Издательский центр «Академия», 2018. 560с. ISBN 978-5-7695
- 2. Трофимова, Т. И. Руководство к решению задач по физике [Текст] : учебное пособие для бакалавров / Т. И. Трофимова.- 3-е изд., перераб. и доп.. Москва : Юрайт, 2017. 265 с. (Бакалавр. Базовый курс). ISBN 978-5-9916-2328-5.

5.2 Дополнительная литература

- 1. Бустубаева, С.М. Методические рекомендации для проведения практических занятий по дисциплине «Физика» / С.М.Бустубаева Кумертау: Кумертауский филиал ОГУ, 2022. 8 с.
- 2. Бустубаева, С.М. Методические рекомендации по организации самостоятельной работы по дисциплине «Физика» /С.М. Бустубаева Кумертау: Кумертауский филиал ОГУ, 2022. 18 с.
- 3. Бустубаева, С.М. Методические рекомендации для проведения лабораторных работ по дисциплине «Физика» / С.М.Бустубаева Кумертау: Кумертауский филиал ОГУ, 2022. 8 с.
- 4. Физика [Электронный ресурс] : учебник / В.И. Демидченко, И.В. Демидченко. 6-е изд., перераб. и доп. М. : ИНФРА-М, 2016. 581 с. ISBN:978-5-16-010079-1. Режим доступа: http://znanium.com/bookread2.php?book=469821.
- 5. Физика [Электронный ресурс] : учеб. пособие / А.В. Ильюшонок, П.В. Астахов, И.А. Гончаренко. М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2015. 600 с. (Высшее образование). ISBN 978-5-16-006556-4. Режим доступа: http://znanium.com/bookread2.php?book=397226.
- 6. Физика. Практикум [Электронный ресурс] : учеб. пособие / Г.В. Врублевская, И.А. Гончаренко, А.В. Ильюшонок. М.: НИЦ Инфра-М; Мн.: Нов. знание, 2014. 286 с. (Высшее образование). ISBN 978-5-16-005340-0. Режим доступа: http://znanium.com/bookread2.php?book=252334.

5.3 Интернет-ресурсы

- 1. https://universarium.org/catalog «Универсариум», Медиотека: «Физика. Лекции» http://aist.osu.ru/ АИССТ ОГУ автоматизированная интерактивная система сетевого тестирования ОГУ
 - 2. http://en.edu.ru/ Естественно-научный образовательный портал
- 3. Вестник Московского Университета. Серия 1. Математика. Механика: журнал. М.: Агенство «Роспечать» периодическое научное издание отражает тематику важнейших направлений теоретических исследований по математике и механике. start-in-fr.html">http://vestnik.math.msu.su>start-in-fr.html

5.4 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

- 1. Операционная система Microsoft Windows
- 2. Пакет настольных приложений Microsoft Office (Word, Excel, PowerPoint, OneNote, Outlook, Publisher, Access)
- 3. Приложения Microsoft Visio
- 4. Антивирус Dr. Web Desktop Security Suite
- 5. Бесплатное средство просмотра файлов PDF Adobe Reader
- 6. Свободный файловый архиватор 7-Zip
- 7. https://yandex.ru/ бесплатный российский Интернет обозреватель Яндекс. Браузер

6 Материально-техническое обеспечение дисциплины

Лекционные и практические занятия проводятся в кабинете физики. Лабораторные занятия проводятся в лаборатории физики.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории. Посадочные места по количеству обучающихся, (13 парт и 26 ученических стульев); место преподавателя (1 стол, 1 стул, 1 ноутбук с лицензионным программным обеспечением, с доступом к сети Интернет); комплект учебно-наглядных пособий («Фундаментальные физические константы», «Основные единицы системы СИ», «Методические материалы»); комплект учебно-методической документации, в том числе на электронном носителе (учебники и учебные пособия, карточки-задания, комплекты тестовых заданий, методические рекомендации и разработки); комплект учебного оборудования (штангенциркуль, набор гирь, секундомер, генератор звуковых частот); лабораторная установка («Механика-2»).

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети "Интернет", и обеспечением доступа в электронную информационнообразовательную среду филиала и ОГУ.

ЛИСТ согласования рабочей программы

Направление подготовки: <u>09.03.01 Информатика и вычислительная техника</u> код и наименование
Профиль: Автоматизированные системы обработки информации и управления
Дисциплина: <u>Б1, Д.Б.11 Физика</u> Форма обучения: <u>заочная</u> (очная, очно-заочная)
Год набора <u>2022</u>
РЕКОМЕНДОВАНА на заседании кафедры <u>ООД и IT-технологий</u> наименование кафедры
протокол № <u>1</u> от « <u>01</u> » <u>сентября 2022</u> г.
Ответственный исполнитель, и.о. зав. кафедрой <u>ООД и ІТ-технологий</u> — <u>Д.К.Афанасова</u> — расшифровка подпись — расшифровка подписы
Исполнители: <u>Старший преподаватель кафедры ООД и ІТ-технологий расшифровка подписы расшифровка подписи</u>
ОДОБРЕНА на заседании НМС, протокол № <u>1/а</u> от « <u>02</u> » сентября 2022 г.
<u>Председатель НМС</u> подпись Л.Ю. Полякова расшифровка подписи
СОГЛАСОВАНО:
И.о. зав. кафедрой <u>ООД и IT-технологий — Д.К.Афанасова</u> подпись — расшифровка подписи
Заведующий библиотекой